یک روش تطبیقی جدید برای حفاظت از شبکه توزیع با ضریب نفوذ بالای تولیدات پراکنده

نوع مقاله : علمی-پژوهشی

نویسندگان

1 مرکز تحقیقات ریز شبکه‌های هوشمند - واحد نجف‌آباد - دانشگاه آزاد اسلامی

2 دانشکده مهندسی برق - واحد نجف‌آباد - دانشگاه آزاد اسلامی

چکیده

رشد سریع منابع تولید پراکنده در شبکه‌های توزیع منجربه ایجاد چالش‌های جدیدی در هماهنگی حفاظتی رله‌های اضافه جریان شده‌است. تاکنون، روش‌های تطبیقی مختلفی به‌منظور حل مشکل ناهماهنگی منابع تولید پراکنده ارائه شده‌است، اما با این وجود، ضریب نفوذ غیرقابل پیش‌بینی منابع DG نصب‌شده، اهمیت یک روش مستقل از ضریب نفوذ را برجسته می‌کند. این مطالعه یک راه‌کار آفلاین، سریع، عملیاتی و ارزان‌قیمت را ارائه می‌دهد که هماهنگی حفاظتی را در هر ضریب نفوذ و مکان منابع DG تضمین می‌کند. به این منظور، در ابتدا، در ضریب نفوذها و مکان‌های مختلف منابع DG، عمل‌کرد سیستم حفاظتی سنتی موردمطالعه قرار می‌گیرد که بدترین حالات ناهماهنگی مشخص شود. سپس، باتوجه‌به استانداردهای رله‌ها، منحنی مشخصه حفاظت پشتیبان به‌نحوی اصلاح می‌گردد که بتواند هماهنگی را در بدترین حالات حفظ کند. راه‌کار پیشنهادی برروی یک شبکه توزیع که به تعداد زیادی DG مجهز است، اعمال شده‌است. نتایج با موفقیت کارایی روش پیشنهادی را اثبات می‌کند. این حقیقت این روش را یک گزینه جذاب برای شبکه‌های توزیع همراه با منابع DG می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

A New Adaptive Method for Protection of Distribution System with High Penetration of Distributed Generations

نویسندگان [English]

  • H. Bisheh 1
  • B. Fani 2
  • G. Shahgholian 2
1 Smart Microgrid Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
2 Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده [English]

The rapid growth of distributed generations (DG) in distribution grids brings new challenges in the protection coordination of overcurrent relays. So far, various adaptive techniques have been addressed to solve DG units’ mis-coordination problem, however, the un-predictable penetration of installed DG units highlights the importance of a penetration-free methodology. This study presents a novel offline, quick, applicable and cheap solution which guarantees protection coordination for any penetration and location of DG units. To do so, first, under different DG penetration levels and locations, the conventional protection performance is studied to discover the worst mis-coordination cases. Next, according to relays standards, the characteristic curve of the back-up relay is modified such that it can maintain coordination in all worst cases. The proposed methodology is applied to a power distribution network equipped with numerous DG units. The results successfully prove the effectiveness of the proposed method. This fact makes this method an attractive option for distribution systems with DG units.

کلیدواژه‌ها [English]

  • Distribution network
  • photovoltaic system
  • coordination of the overcurrent relays
  • penetration of DG
[1]      D. Ranamuka, A. P. Agalgaonkar and K. M. Muttaqi, "Examining the Interactions between DG Units and Voltage Regulating Devices for Effective Voltage Control in Distribution Systems," IEEE Trans. on Industry Applications, vol. 53, pp. 1485–1496, 2017.
[2]      K.A. Joshi and N.M. Pindoriya, "Case-specificity and its implications in distribution network analysis with increasing penetration of photovoltaic generation," CSEE Journal of Power and Energy Systems, vol. 3, no. 1, 2017.
[3]      B. Yan, P.B. Luh, G. Warner, and P. Zhang "Operation and Design Optimization of Microgrids with Renewables," IEEE Trans. on Automation Science and Engineering, vol. 14, no. 2, pp. 573-585, 2017.
[4]      W. Zhang, Y. Xu, W. Liu, F. Ferrese and L.Liu "Fully Distributed Coordination of Multiple DFIGs in a Microgrid for Load Sharing," IEEE Trans. on Automation Science and Engineering, vol. 4, no. 2, pp. 806-815, 2013.
[5]      D.I. Doukas, K. Papastergiou, P. Bakas and A. Marinopoulos, "Energy storage sizing for large scale PV power plants base-load operation- Comparative study and results", Proceeding of the IEEE/PVSC, pp. 570-574, Austin, TX, USA, 2012.
[6]      J.C. Gómez, J. Vaschetti, C. Coyos and C. Ibarlucea, "Distributed generation: impact on protections and power quality," IEEE Latin America Trans., vol. 11, no. 1, pp. 460-465, 2013.
[7]      M.E. Baran, H. Hooshyar, Z. Shen and A. Huang, "Accommodating high pv penetration on distribution feeders", IEEE Trans. on Smart Grid, vol. 3, no. 2, pp. 1039-1046, 2012.
[8]      H. Hooshyar and M.E. Baran, "Fault analysis on distribution feeders with highpenetration of PV systems," IEEE Trans. on Power Systems, vol. 28, no. 3, pp. 2890-2896, 2013.
[9]      N. Rajaei, M.H. Ahmed, M.M.A. Salama and R.K. Varma, "Fault current management using inverter-based distributed generators in smart grids", IEEE Trans. on Smart Grid, vol. 5, no. 5, pp. 2183-2193, 2014.
[10]      M.M. Salem, N.I. Elkalashy, Y. Atia and T.A. Kawady, "Modified inverter control of distributed generationfor enhanced relaying coordination in distribution networks", IEEE Trans. on Power Delivery, vol. 32, no. 1, pp. 78-87, 2017.
[11]      D.Q. Hung, N. Mithulananthan and K.Y. Lee," Determining PV penetration for distribution systems with time-varying load models", IEEE Trans. on Power Systems, vol. 29, no. 6, pp. 3048-3057, 2014
[12]      محمودرضا شاکرمی، مسعود طرهان و اسماعیل رکرک، «مکان‌یابی و تعیین ظرفیت بهینه منابع تولید پراکنده و خازنها به‌طور همزمان در سیستم‌های توزیع با در نظر گرفتن مدل بار چند سطحی و وابسته به ولتاژ،» مجله مهندسی برق دانشگاه تبریز، جلد 74، شماره 1، صفحات 123-139، 1391.
[13]      A.M. Al-Sabounchi, J. Gow and M. Al-Akaidi, "Optimal sizing and location of large PV plants on radial distribution feeders for minimum line losses", Proceeding of the IEEE/EPECS, pp. 1-7, Sharjah, United Arab Emirates, 2015.
[14]      D.K. Khatod, V. Pant and J. Sharma, "Evolutionary programming based optimal placement of renewable distributed generators", IEEE Trans. on Power Systems, vol. 28, no. 2, pp. 683-695, 2013.
[15]      M. Lwin, J. Guo, N. Dimitrov and S. Santoso, "Stochastic optimization for discrete overcurrent relay tripping characteristics and coordination", IEEE Trans. on Smart Grid, pp.1-1, 2017.
[16]      A. Srivastava, J.M. Tripathi, R. Krishan and S.K. Parida, "Optimal coordination of overcurrent relays using gravitational search algorithm with DG penetration", IEEE Trans. on Industry Applications, vol. 54, no. 2, pp. 1155-1165, 2018.
[17]      E. Purwar, D.N. Vishwakarma and S.P. Singh, "A novel constraints reduction based optimal relay coordination method considering variable operational status of distribution system with DGs", IEEE Trans. on Smart Grid, pp.1-10, 2017.
[18]      Y. Tang and R. Ayyanar, "Methodology of automated protection analysis for large distribution feeders with high penetration of photovoltaic systems", IEEE Power and Energy Technology Systems Journal, vol. 4, no. 1, pp.1-9, 2017.
[19]      عباس صابری نوقابی، حامد بدرسیمایی و محسن فرشاد، «یک روش احتمالی به‌منظور تنظیم بهینه رله‌های اضافه جریان ترکیبی با در نظر گرفتن عدم‌قطعیت‌ها»، مجله مهندسی برق دانشگاه تبریز، جلد 74، شماره 1، صفحات 141-153، 1396.
[20]      A.H.R. Butler, J. Hambrick and B. Kroposki, "Steady-state analysis of maximum photovoltaic penetration levels on typical distribution feeders", IEEE Trans. on Sustainable Energy, vol. 4, no. 2, pp. 350-357, 2013.
[21]      H. Zhan, C. Wang, Y. Wang, X. Yang, X. Zhang, C. Wu, and Y. Chen, "Relay protection coordination integrated optimal placement and sizing of distributed generation sources in distribution networks", IEEE Trans. on Smart Grid, vol. 7, pp. 55-65, 2016.
[22]      E. Sortomme, S.S. Venkata and J. Mitra, "Microgrid protection using communication-assisted digital relays", IEEE Trans. on Power Delivery, vol. 25, no. 4, pp. 2789-2796, 2010.
[23]      V.C. Nikolaidis, E. Papanikolaou, and A.S. Safigianni, "A communication-assisted overcurrent protection scheme for radial distribution systems withdistributed generation", IEEE Trans. on Smart Grid, vol. 7, pp. 114-123, 2016.
[24]      E. Sortomme, S.S. Venkata and J. Mitra, "Microgrid protection using communication-assisted digital relays", IEEE Trans. on Power Delivery, vol. 25, no. 4, pp. 2789-2796, 2010.
[25]      E.O. Schweitzer, D. Finney, and M.V. Mynam "Communications-assisted schemes for distributed generation protection", Proceeding of the IEEE/TDC, pp. 1-8, Orlando, FL, USA, 2012.
[26]      Z. Liu, C. Su, H.K. Høidalen and Z. Chen, "A multiagent system-based protection and control scheme for distribution system with distributed-generation integration", IEEE Trans. on Power Delivery, vol. 32, pp. 536-545, 2017.
[27]      P.C. Maiola and J.G. Rolim, "A multi-agent system for protectioncoordination of radial systems in the presence of distributed generation", Proceeding of the IEEE/DPSP, pp. 1-6, Birmingham, UK, 2012.
[28]      H. Wan, K.K. Li and K.P. Wong, "An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system", IEEE Trans. on Industry Applications, vol. 46, no. 5, pp. 2118-2124, 2010.
[29]      I. Sadeghkhani, M.E. Hamedani-Golshan, J.M. Guerrero and A. Mehrizi-Sani, "A current limiting strategy to improve fault ride-through of inverter interfaced autonomous microgrids", IEEE Trans. on Smart Grid, vol. 8, no. 99, pp. 1-11, 2016.
[30]      K.O. Oureilidis and C.S. Demoulias, "A fault clearing method in converter-dominated microgrids with conventional protection means", IEEE Trans. on Smart Grid, vol. 31, no. 6, pp. 4628-4640, 2016.
[31]      D.S. Kumar, D. Srinivasan and T. Reindl, "A fast and scalable protection scheme for distributed network with distributed generation", IEEE Trans. Power Delivery, vol. 31, no. 2, pp. 67–75, 2016.
[32]      R.K. Varma, S.A. Rahman, V. Atodaria, S. Mohan and T. Vanderheide,  "Technique for fast detection of short circuit current in PV distributed generator", IEEE Power and Energy Technology Systems Journal, vol.3, no.4, pp. 155-165, 2016
[33]      Min Cheol Ahn and Tae Kuk Ko, "Proof-of-concept of a smart fault current controllerwith a superconducting coil for the smart grid", IEEE Trans. on Applied Superconductivity, vol. 21, no. 3, 2011.
[34]      A. Tjahjono, D. O. Anggriawan, A. K. Faizin, A. Priyadi, M. Pujiantara, T. Taufik, M. H. Purnomo, "Adaptive modified firefly algorithm for optimal coordination of overcurrent relays", IET Generation, Transmission and Distribution, vol. 11, no. 10, pp. 2575-2585, 2017.
[35]      H.H. Zeineldin, Y. Rady, I. Mohamed, V. Khadkikar, and V.R. Pandi, "A Protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems", IEEE Trans. on Smart Grid, vol. 4, no. 3, pp. 1523 – 1532, 2013.
[36]      K.A. Saleh, H.H. Zeineldin, A. Al-Hinai, and E.F. El-Saadany, "Optimal coordination of directional overcurrent relays using a new time–current–voltage characteristic", IEEE Trans. on Power Delivery, vol. 30, no. 2, pp. 537 – 544, 2015.
[37]      T.S. Ustun, C. Ozansoy and A. Zayegh, "Fault current coefficient and time delay assignment for microgrid protection system with central protection unit", IEEE Trans. on Power Systems, vol 28, no. 2, pp. 598-606, 2013.
[38]      A. Saberi-Noghabi, H. Rajabi-Mashhadi and J. Sadeh, "Optimal coordination of directional overcurrent relays considering different network topologies using interval linear programming", IEEE Trans. on Power Delivery, vol. 25, no. 3, pp. 1348-1354, 2010.
[39]      B. Hussain, S.M. Sharkh, S.Hussain and M.A. Abusara, "An adaptive relaying scheme for fuse saving in distribution networks with distributed generation", IEEE Trans. on Power Delivery, vol. 28, no. 2, pp. 669-677, 2013.
[40]      M. Dewadasa, A. Ghosh and G. Ledwich, "Fold back current control and admittance protection scheme for a distribution network containing distributed generators", IET Generation, Transmission and Distribution, vol. 4, no. 8, pp. 952-962, 2010.
[41]      M. Ojaghi, Z. Sudi, and J. Faiz, "Implementation of full adaptive technique to optimal coordination of overcurrent relays", IEEE Trans. on Power Delivery, vol. 28, no. 1, pp. 235-244, 2013.
[42]      P.H. Shah and B.R. Bhalja, "New adaptive digital relaying scheme to tackle recloser–fuse miscoordination during distributed generation interconnections", IET Generation, Transmission and Distribution, vol. 8, no. 4, pp. 682-688, 2014.
[43]      E.C. Piesciorovsky and N.N. Schulz, "Fuse-relay adaptive overcurrent protection scheme for microgrid with distributed generators", IET Generation, Transmission and Distribution, vol. 11, no. 2, pp. 540-549, 2017.
[44]      A. Sinclair, D. Finney, D. Martin, and P. Sharma, "Distance protection in distribution systems: how it assists with integrating distributed resources", IEEE Trans. on Industry Applications, vol. 50, no. 3, pp. 2186-2196, 2014.
[45]      S. Chaitusaney and A. Yokoyama, "Prevention of reliability degradation from recloser–fuse miscoordination due to distributed generation", Ieee Trans. on Power Delivery, vol. 23, no. 4, pp. 2545-2554, 2008.
[46]      M.Y Shih, A Conde, Z Leonowicz and L Martirano, "An adaptive overcurrent coordination scheme to improve relay sensitivity and overcome drawbacks due to distributed generation in smart grids", IEEE Trans. on Industry Applications, vol. 53, no. 6, pp. 5217-5228, 2017.
[47]      S. Shen, D. Lin, H. Wang, P. Hu, K. Jiang, D. Lin and B. He, "An adaptive protection scheme for distribution systems with DGs based on optimized thevenin equivalent parameters estimation", IEEE Trans. on Power Delivery, vol. 32, no. 1, pp. 411-419, 2017.
[48]      A. Agrawal, M. Singh and M.V. Tejeswini, "Voltage current based time inverse relay coordination for PV feed distribution systems", Proceeding of the IEEE/ NPSC, pp. 1-6, 2016.
[49]      H.C. Jo, S.K. Joo, and K. Lee, "Optimal placement of superconducting fault current limiters (SFCLs) for protection of an electric powersystem with distributed generations (DGs)", IEEE Trans. on Applied Superconductivity, vol. 23, no. 3, 2013.
[50]      K. Wheeler, M. Elsamahy, S. Faried, "Use of superconducting fault current limiters for mitigation of distributed generation influences in radial distribution network fuse–recloser protection systems", IET Generation, Transmission and Distribution, vol. 11, no. 7, pp. 1605-1612, 2017.
[51]      C. Prévé, "Protection of electrical networks", ISTE Ltd, 2006.
[52]      D.Q. Hung, N. Mithulananthan and K.Y. Lee,"Determining PV penetration for distribution systems with time-varying load models", IEEE Trans. on Power Systems, vol. 29, no. 6, pp. 3048-3057, 2014
[53]      "IEC standard for short-circuit currents in three-phase a.c. systems", IEC Std 60909.
[54]      “IEC standard for single input energizing quantity measuring relays with dependent or independent time”, IEC standard 60255.