آشکارسازی عیب گردش روغن در یاتاقان لغزشی موتور القایی سه‌فاز با استفاده از تبدیل هیلبرت - هانگ

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی - دانشگاه زنجان

چکیده

موتور‌های القایی نقشی بی‌بدیل در راه‌اندازی چرخ صنعت و چرخه تولید ایفا می‌کنند. به­همین­دلیل، هم در زمینه بهبود فرآیند ساخت و تولید و هم در زمینه پایش وضعیت آن‌ها تحقیقات زیادی انجام می‌شود. این مقاله به یکی از عیوب رایج مربوط به این نوع موتور‌ها، یعنی عیب گردش روغن در یاتاقان لغزشی می­پردازد و سعی بر این دارد که برای آشکارسازی عیب مزبور راه­کاری مفید و موثر ارائه دهد. براین­اساس ابتدا موتور القایی که در یکی از یاتاقان­های خود دچار عیب گردش روغن است، با تعریف تابع فاصله هوایی مناسب و با استفاده از تئوری تابع سیم­پیچ اصلاح­شده مدل­سازی و شبیه­سازی می­گردد. سپس جریان استاتور در حالت­های سالم و معیوب به­منظور کشف روشی موثر و غیرتهاجمی برای تشخیص عیب اخذ و ذخیره می­شود. سیگنال جریان استاتور با استفاده از ترکیبی از روش تجزیه مود تجربی و تبدیل هیلبرت پردازش شده و سپس شاخصی مناسب جهت آشکارسازی عیب گردش روغن ارائه می‌گردد. درنهایت کارایی شاخص پیشنهادی با اعمال آن برروی سیگنال جریان استاتور بدست­آمده از چند موتور القایی واقعی، مورد ارزیابی قرار گرفته و در عمل به اثبات می­رسد.

کلیدواژه‌ها


عنوان مقاله [English]

Sleeve Bearing Oil Whirl Fault Diagnosis In Three Phase Induction Motor using Hilbert - Huang Transform

نویسندگان [English]

  • R. Akhondi
  • M. Ojaghi
Faculty of Engineering, University of Zanjan, Zanjan, Iran
چکیده [English]

Induction motors play an indispensable role in setting up the industry’s wheel and production cycle. Therefore, much research is being done to improve their construction and production and to monitor their condition. This paper aims to study and investigate a common fault related to these motors, i.e. the oil whirl fault within their sleeve bearing, and try to provide a useful and effective solution in order to diagnose this fault. For this purpose, firstly, an induction motor that has one of its bearings with oil whirl fault, is modeled and simulated by appropriate definition of the air gap function and using the modified winding function approach. Then, the stator current is obtained under both the healthy and faulty conditions to detect an effective and non-invasive method for the fault diagnosis. The stator current signal is processed using a combination of the empirical mode decomposition and Hilbert transform, called Hilbert-Huang transform and a suitable index for detecting oil whirl fault is proposed. Then, the efficiency of the proposed index is evaluated by applying it to the stator current signal obtained from the practical induction motor and its efficiency is proved in practice.

کلیدواژه‌ها [English]

  • Condition monitoring
  • winding function approach
  • hilbert-huang transform
  • oil whirl fault
  • induction motor
  • sleeve bearing
[1]      S. Singhal and R. Mistry, “Oil whirl rotor dynamic instability phenomenon-diagnosis and cure in large induction motor,” Proc. of IEEE IAS PCIC, pp. 1-8, Sep. 2009.
[2]      M. Ojaghi and N. Yazdandoost, “Oil-whirl fault modeling, simulation, and detection in sleeve bearings of squirrel cage induction motors” IEEE Transactions on Energy Conversion, vol. 30, no. 4, December 2015.
[3]       منصور اوجاقی، ناصر یزدان دوست، « تشخیص عیب گردش روغن در یاتاقان لغزشی موتورالقایی با استفاده از هارمونیک­های توان لحظه­ای»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 4، صفحات 7 تا 17، زمستان 1395.
[4]      M. Ojaghi, and N. Yazdandoost, “Winding function approach to simulate induction motors under sleeve bearing fault,” in Proc. IEEE Int. Conf. Industrial Technology, pp. 158–163, 2014.
[5]      J. Jung, Y. Park, S. B. Lee, C. Cho, K. Kim, E. Wiedenbrug and M. Teska, “Monitoring journal bearing faults making use of motor current signature analysis for induction motors,” IEEE Industry Applications Magazine, pp. 12-21, Jul./Aug. 2017.
[6]      S. Osman and W. Wang, “A morphological Hilbert-Huang transform technique for bearing fault detection,” IEEE Trans. Instrum. Meas, vol. 65, no. 11, pp. 2646-2656, Nov. 2016.
[7]      E. Elbouchikhi, V. Choqueuse, Y. Amirat, M. Benbouzid and S. Turri, “An efficient Hilbert–Huang transform-based bearing faults detection in induction machines,” IEEE Trans. Energy Conversion, vol. 32, no. 2, pp. 401-413, Jun. 2017.
[8]      A. Verma1, S. Sarangi, M. Kolekar and S. Banerjee, “Oil whip detection using stator current monitoring,” IEEE Symposium on Computers & Informatics, 2012.
[9]      J. E. Berry, “Oil whirl and whip instabilities – within journal bearing,” https://www.machinerylubrication.com/Read/754/oil-whirl-whip, May 2005.
[10]      H. A. Toliyat, S. Nandi, S. Choi and H. Meshgin-Kelk, Electric Machines, Modeling, Condition Monitoring and Fault Diagnosis, CRC Press, 2013.
[11]      N.E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. Roy. Soc. Lond. A, vol. 454, pp. 903-995, 1998.
[12]      T.-Y. Wu, C.-C. Wang, and Y.-L. Chung, “The bearing fault diagnosis of rotating machinery by using Hilbert–Huang transform,” in Proc. Int. Conf. Electric Inform. Control Eng. (ICEICE), pp. 6238–6241, 2011.
[13]      C. Li, L. Zhan and L. Shen, “Friction signal denoising using complete ensemble EMD with adaptive noise and mutual information”, Entropy, vol. 17, pp. 5965-5979, 2015.