کنترل تطبیقی انگشتان دست ربات برای گرفتن توپ نرم ساکن و در حال سقوط به روش فازی سوگنو

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق - دانشگاه علم و صنعت ایران

چکیده

داشتن ابزار گرفتن مناسب و تطبیق‌پذیر با کارها و اجسام مختلف از ویژگی‌های بنیادین ربات‌ها در هنگام ارتباط با محیط می‌باشد. از این‌رو، برنامه‌ریزی و طراحی سازوکاری که در آن انگشتان دست به‌طور مطلوب هدایت شوند، امری حائز اهمیت است. انگشتان ربات رفتاری کاملا غیرخطی دارند و تحت تاثیر عواملی چون اصطکاک، ویژگی‌های فیزیکی سازوکارهای انتقال توان و تغییر جهت‌گیری دست، مدل‌سازی آن‌ها با دشواری‌هایی روبرو است. از این رو، استفاده از کنترل‌کننده‌ای که به‌طور مستقل از مدل عمل نماید، بسیار سودمند خواهد بود. در این مقاله، از کنترل‌کننده فازی تاکاگی سوگنو کانگ (TSK) که پارامترهای قسمت تالی آن به‌وسیله قاعده‌ای به‌روز می‌شوند، جهت کنترل نیرو و موقعیت انگشتان ربات برای گرفتن توپ سبک و نرم استفاده می‌شود. طراحی در فضای دکارتی و عدم وابستگی به مدل دینامیکی ربات از مهم‌ترین مزایای این روش می‌باشند. بنابراین ابتدا با تعیین استراتژی‌ای برای گرفتن توپ ساکن، مقادیر مرجع نیرو و موقعیت محاسبه می‌شوند. سپس عملکرد کنترل‌کننده فازی تطبیقی با و بدون حضور عواملی چون نویز اندازه‌گیری نیرو و اصطکاک مفصلی بررسی می‌شوند. علاوه بر این، فرآیند مهارکردن توپ متحرک در حال سقوط به 3 فاز نزدیک‌شدن، قفل‌شدن (ضربه) و نگه‌داشتن تقسیم‌بندی می‌شود. سپس با بررسی نتایج به‌دست‌آمده از
شبیه‌سازی، کارآمدی این روش در انجام مراحل سه‌گانه یادشده نشان داده می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Adaptive Control of Robotic Fingers for Grasping Stationary and Falling Soft Balls using Fuzzy Sugeno method

نویسندگان [English]

  • S. RadMoghadam
  • M. Farrokhi
Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

Acquiring appropriate tools adaptable to various tasks is the most fundamental feature of the robots dealing with environment. Therefore, it would be more beneficial to plan a mechanism amenable to control the robotic fingers. Since robotic fingers have completely nonlinear behavior and their modeling is associated with the difficulties arising from the factors such as friction, physical features of transmission mechanisms, and changes in hand’s orientation, adopting a model-independent method of control will be useful. In this paper, a Takagi-Sugeno-Kang (TSK) fuzzy controller, which adaptively updates its consequence parameters, is employed for position/force control of the fingertips grasping a light and soft ball. Designing in Cartesian space and being model-independent are some of the most important advantages of this method. In the first step, force and position reference values are calculated using a predetermined stationary grasping strategy. Afterward, the performance of the adaptive fuzzy TSK controller in maintaining the ball with and without the existence of force measurement noise and joint friction are evaluated. Furthermore, the process of catching a falling ball is divided into approaching, locking and holding phases. Finally, in the simulation section, it is shown that the adaptive fuzzy TSK controller is an efficient way for performing the aforementioned three phases.

کلیدواژه‌ها [English]

  • Robotic hand
  • grasping
  • fuzzy controller
  • measurement noise
  • joint friction
[1]      R. Ozawa and K. Tahara, “Grasp and dexterous manipulation of multifingered robotic hands: a review from a control view point,” Advanced Robotics, vol. 31, no. 20, pp. 1030-1050, 2017.
[2]      E. Melo, O. Sanchez and D. Hurtado, “Anthropomorphic robotic hands: a review,” Journal of Engineering and Development, vol. 32, no. 2, pp. 217-313, 2014. 
[3]      L. Zollo, S. Roccella, E. Guglielmelli, M. Chiara Carrozza and P. Dario, “Biomechatronic design and control of an anthropomorphic artificial hand for prosthetic and robotic applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 4, pp. 418-429, 2007.
[4]      T. Wojtara, K. Nonami, H. Shao, R. Yuasa, S. Amano, D. Waterman and Y. Nobumoto, “Hydraulic master-slave land mine clearance robot hand controlled by pulse modulation,” Mechatronics, vol. 15, no. 5, pp. 589-609, 2005.
[5]      مسعود سیدسخا، حامد خراطی و فرزاد هاشم‌زاده، «کنترل تطبیقی سیستم کنترل از راه دور با وجود نامعینی‌های دینامیکی و نامعینی در شتاب گرانشی»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 4، صفحات 233-239، پاییز 1395.
[6]      Z. Doulgeri and Y. Karayiannidis, “Force-position control for a robot finger with a soft tip and kinematic uncertainties,” Robotics and Autonomous Systems, vol. 55, no. 4, pp. 328–336, 2007.
[7]      V. Agrawal, W. J. Peine and B. Yao, “Modeling of transmission characteristics across a cable-conduit system,” IEEE Transactions on Robotics, vol. 26, no. 5, pp. 914-924, 2010.
[8]      G. Palli and C. Melchiorri, “Model and control of tendon-sheath transmission system,” IEEE International Conference on Robotics and Automation, pp. 988-993, Orlando, 2006.
[9]      L. Zhao, L. Ge and T. Wang, “Position control for a two-joint robot finger system driven by pneumatic artificial muscles,” Transactions of the Institute of Measurement and Control, pp. 1-12, 2017.
[10]      M. Grossard, “Robust descentralized control of a fully actuated robot hand,” 15th IFAC Symposium on Information Control Problems in Manufacturing: INCOM, vol. 48, no. 3, pp. 2176-2182, 2015.
[11]      T. Yoshikawa, “Multifingered robot hands: control for grasping and manipulation,” Annual Reviews in Control, vol. 34, no. 2, pp. 199-208, 2010.
[12]      T. D. Niehues, P. Rao and A. D. Deshpande, “Compliance in parallel to actuators for improving stability of robotic hands during grasping and manipulation,” International Journal of Robotic Research, vol. 34, no. 3, pp. 256-269, 2015.
[13]      M. Mukhtar, E. Akyurek, T. Kalganova and N. Lwsne, ”Neural network based control method implemented on ambidexterous robot hand,” International Journal of Automation and Smart Technology, vol. 7, no. 1, pp. 27-32, 2017.
[14]      Y. Zhao and C. C. Cheah, “Neural network control of multifingered robot hands using visual feedback,” IEEE Transactions on Neural Networks, vol. 20, no. 2, pp. 758-767, 2009.
[15]      R. Rodriguez and V. Vega, “Normal and tangent force neuro-fuzzy control of a soft-tip robot with unknown kinematics,” Engineering Applications of Artificial Intelligence, vol. 65, no. 1, pp. 43-50, 2017.
[16]      J. Ko, M. B. Jun, G. Gilardi, E. Haslam and E. J. Park, “Fuzzy PWM-PID control of concontracting antagonistic shape memory alloy muscle pairs in an artificial finger,” Mechatronics, vol. 21, no. 7, pp. 1190-1202, 2011.
[17]      C. Chen and D. S. Naidu, “Hybrid control strategies for a five-finger robotic hand,” Biomedical Signal Processing and Control, vol. 8, no. 4, pp. 382-390, 2013. 
[18]      X. Liu, X. Zheng, S. Li, X. Chen and Z. Wang, “Improved adaptive neural network control for humanoid robot hand in workspace,” Journal of Mechanical Engineering Science, vol. 229, no. 5, pp. 869-881, 2015.
[19]      L. Tuan, Y. Joo, L. Tien and P. Duong, “Adaptive neural network second-order sliding mode control of dual arm robots,” International Journal of Control Automation and Systems, vol. 15, no. 6, pp. 2883-2891, 2017.
[20]      Q. Zhou, H. Li and P. Shi, “Decentralized adaptive fuzzy tracking control for robot finger,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 3, pp. 501-510, 2015.
[21]      C. Barbalata, M. W. Dunnigan and Y. Petillot, “Position/force operational space control for underwater manipulation,” Robotics and Autonomous Systems, vol. 100, no. 1, pp. 150-159, 2018.
[22]      R. M. Murray, Z. Li and S. S. Sastry, A Mathematical Introduction to RoboticManipulation, CRC    Press, 1994.
[23]      A. Namiki, Y. Imai, M. Ishikawa and M. Kaneko, “Development of a high-speed multifingered system and its application to catching,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2666-2671, 2003.
[24]      Y. Imai, A. Namiki, K. Hashimoto and M. Ishikawa, “Dynamic active catching using a high-speed multifingered hand and a high-speed vision system,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 1849-1854, 2004.
[25]      F. L. Lewis, C. T. Abdallah and D. N. Dawson, Robot Manipulator Control Theory and Practice, CRC Press, 2003.
[26]      V. P. Jimenez, O. F. A. Sanchez and M. F. M. Monroy, “Hybrid force-position control of three fingers end effector,” Applied Mechanics and Materials, vol. 346, no. 75, pp. 75-82, 2013.
[27]      A. Fanaei and M. Farrokhi, “Robust adaptive neuro-fuzzy controller for hybrid position/force control of robot manipulators in contact with unknown environment,” Journal of Intelligent and Fuzzy Systems, vol. 17, no. 2, pp. 125-144, 2006.
[28]      J. Craig, Introduction to Robotic: Mechanics and Control, Addison-Wesley Publishing Company, 1989.
[29]      پوریا جعفری، محمد تشنه‌لب و مهسان توکلی کاخکی، «طراحی کنترل‌کننده فازی تطبیقی مستقیم برای سیستم‌های مرتبه کسری غیرخطی به‌کمک جبران‌ساز»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 917-929، پاییز 1396.
[30]      A. Boubakir, S. Labiod and F. Boudjema, “A stable self-tuning proportional-integral-derivative controller for a class of multi-input multi-output nonlinear systems,” Journal of Vibration and Control, vol. 18, no. 2, pp. 228-239, 2011.
[31]      W. D. Chang, R. C. Hwang and J. G. Hsieh, “A self-tuning PID control for a class of nonlinear systems based on the lyapunov approach,” Journal of Process Control, vol. 12, no. 2, pp. 233-242, 2002. 
[32]      H. K. Khalil, Nonlinear Systems, Prentice-Hall, 1996.