بررسی و کنترل عوامل مؤثر در ایجاد نوسانات توان در توربین‌های بادی سرعت متغیر با ژنراتور القایی تغذیه دوگانه

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه کاشان

چکیده

با افزایش سطح نفوذ انرژی باد به شبکه، توجه به کیفیت توان موضوع مهمی شده است. از مهم‌ترین جنبه‌های کیفیت توان، پدیده سوسوزدن و هارمونیک‌ها هستند. عوامل مختلفی در انتشار پدیده سوسوزدن و ایجاد نوسانات توان ناشی از توربین‌های بادی متصل‌شده به شبکه مؤثر هستند برای مثال مشخصات باد )سرعت متوسط باد، اثرات سایه برج و برش باد و نوع توربین مورداستفاده)، شرایط شبکه (نسبت ظرفیت اتصال‌کوتاه شبکه و زاویه امپدانس شبکه) و نوع روش ردیابی حداکثر نقطه توان. در این مقاله عملکرد دو روش ردیابی حداکثر نقطه توان  OTCو TSR در انتشار نوسانات بررسی می‌شود و با انتخاب بهترین روش ردیابی و شرایط شبکه، با اضافه‌کردن فیلتر نوسانات ناشی از اثر سایه برج و برش باد کاهش داده شده است. کلیه جنبه‌های آیرودینامیکی، مکانیکی و الکتریکی یک مزرعه بادی متصل‌شده به شبکه با استفاده از نرم‌افزارهایFAST  و Matlab/Simulink مدل می‌گردد. نتایج شبیه‌سازی صحت عملکرد روش پیشنهادی را در بهبود نوسانات توان نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation and Control of Effective Factors in Power Oscillations Emission for Variable-Speed Wind Turbine with Doubly Fed Induction Generator

نویسندگان [English]

  • M. Rashidian
  • B. Ganji
  • M. Rahimi
Faculty of Electrical and Computer Engineering, University of kashan, Isfahan, Iran
چکیده [English]

With increase of wind power penetrations into the power system, attention to power quality becomes an important issue. Important aspects of power quality are flicker and harmonics. There are numerous factors that affect on flicker emission and power oscillations of grid-connected wind turbines for example wind characteristics (mean wind speed, tower shadow and wind shear effects and type of used wind turbine) and the grid conditions (short circuit capacity ratio and grid impedance angle) and type of the maximum power point tracking. In the present paper, performances of two maximum power point tracking methods (TSR and OTC) in fluctuations emission are evaluated and fluctuations caused by the tower shadow are then reduced by adding filter when the best MPPT method and grid conditions are selected. All aerodynamic, mechanical and electrical aspects of a wind farm connected to the grid are modeled using FAST and MATLAB/SIMULINK. The simulation results are given and they show well the effectiveness of the method proposed for improvement of power fluctuations.

[1] Y. Lei, A. Mullane, G. Lightbody, and R. Yacamini, “Modeling of the wind turbine with a doubly fed induction generator for grid integration studies”, IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 257-264, 2006.
[2] T. Thiringer, T. Petru, and S. Lundberg “Flicker contribution from wind turbine installations,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 157-163, 2004.
[3] غلامرضا صیاد، امین خدابخشیان، رحمت‌الله هوشمند،  «طراحی پایدارساز سیستم قدرت برای توربین‌های بادی مجهز به ژنراتورهای القایی دو تغذیه به روش کلاسیک و الگوریتم ژنتیک»، مجله مهندسی برق تبریز، دوره 39، شماره 1، صفحه 23-13، بهار 1388.
[4] محسن رحیمی، محمدرضا اسماعیلی، «طراحی کنترل‌کننده توان و بهبود میرایی نوسانات پیچشی در توربین بادی DFIG-710 kW نصب‌شده در سایت بینالود»، مجله مهندسی برق تبریز، دوره 46، شماره 4، صفحه 134-123، زمستان 1395.
[5] T. Sun, Z. Chen, and F. Blaabjerg, “Flicker study on variable speed wind turbines with doubly fed induction generators,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 896-905, 2005.
[6] Y. Zhang, Z. Chen, W. Hu, M. Cheng, and Y. Hu, “Flicker mitigation strategy for a doubly fed induction generator by torque control,” IET Renew Power Gen., vol. 8, no. 2, pp. 91-99, 2014.
[7] Y. S. Kim and D. J. Won, “Mitigation of the flicker level of a DFIG using power factor angle control,” IEEE Trans. Power Del., vol. 24, no. 4, pp. 2457-2458, 2009.
[8] Y. Zhang, Z. Chen, W. Hu, and M. Cheng, “Flicker mitigation by individual pitch control of variable speed wind turbines with DFIG,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 20-28, 2014.
[9] T. Sun, Z. Chen, and F. Blaabjerg, “Flicker mitigation of grid connected wind turbines using STATCOM,” International Conference on Power Electronics, Machines and Drives, Edinburgh, UK, pp. 175-180, 2004.
[10] W. Hu, Z. Chen, Y. Wang, and Z. Wang “Flicker mitigation by active power control of variable-speed wind turbines with full-scale back-to-back power converters,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 640-649, 2009.
[11] D. Chwa and K.-B. Lee, “Variable structure control of the active and reactive powers for a DFIG in wind turbines,” IEEE Trans. Ind. Appl., vol. 46, no. 6, pp. 2545-2555, 2010.
[12] A. Luna, F. K. A. Lima, D. Santos, P. Rodríguez, E. H. Watanabe, and S. Arnaltes, “Simplified modeling of a DFIG for transient studies in wind power applications,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 9-20, 2011.
[13] J. B. Ekanayake, L. Holdsworth, X. Wu, and N. Jenkins, “Dynamic modeling of doubly fed induction generator wind turbines,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 803-809, 2003.
[14] H. Jabbari and J. Yoon, “Power capture optimization of variable-speed wind turbines using an output feedback controller,” Renewable Energy, vol. 86, pp. 517-525, 2016.
[15] F. Fateh, W. N. White, and D. Gruenbacher, “A maximum power tracking technique for grid-connected DFIG-based wind turbines,” IEEE Trans. Emerg. Sel. Topics Power Electron. , vol. 3, no. 4, pp. 957-966, 2015.
[16] B. Yang, L. Jiang, L. Wang, W. Yao, and Q. H. Wu, “Nonlinear maximum power point tracking control and modal analysis of DFIG-based wind turbine,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 429-436, 2016.
[17] J. Hu, H. Nian, B. Hu, Y. He, and Z. Q. Zhu, “Direct active and reactive power regulation of DFIG using sliding-mode control approach,” IEEE Trans. Energy Convers., vol. 25, no. 4, pp. 1028-1039, 2010.
[18] J. Mohammadi, S. Vaez-Zadeh, S. Afsharnia, and E. Daryabeigi, “A combined vector and direct power control for DFIG-based wind turbines,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 767-775, 2014.
[19] E. Tremblay, S. Atayde, and A. Chandra, “Comparative study of control strategies for the doubly fed induction generator in wind energy conversion systems: A DSP-based implementation approach,” IEEE Trans. Sustain. Energy, vol. 2, no. 3, pp. 288-299, 2011.
[20] T. Sun, Power Quality of Grid-connected Wind Turbines with DFIG and Their Interaction with the Grid, Ph.D. dissertation, Alborg University, Denmark, 2004.
[21] M. Heydari and K. Smedley, “Comparison of maximum power point tracking methods for medium to high power wind energy systems,” Electrical Power Distribution Networks Conference, Zahedan, Iran, pp.184-189, 2015.