ارائه روشی مبتنی بر نظریه مجموعه‌های فازی و الگوریتم جستجوی گرانشی برای بهبود الگوریتم زنبورعسل در شبکه‌های ویژه خودرویی

نویسندگان

1 بخش ریاضی کاربردی - دانشکده ریاضی و کامپیوتر - دانشگاه شهید باهنر کرمان

2 بخش علوم کامپیوتر - دانشکده ریاضی و کامپیوتر - دانشگاه شهید باهنر کرمان

چکیده

در این مقاله، با استفاده از نظریه مجموعه‌های فازی، الگوریتمی برای انتخاب سرخوشه و بهبود الگوریتم زنبورعسل به‌منظور مسیریابی در شبکه‌های ویژه خودرویی ارائه شده است. با توجه به اینکه تغییر سریع توپولوژی و ازدحام در شبکه‌های ویژه خودرویی باعث شکست اتصال‌ها می‌شوند، پروتکل پیشنهادی با بررسی میزان پایداری و ازدحام اتصال‌ها، میزان اعتبار هر گره و اتصال را محاسبه می‌کند. با توجه به اهمیت به دست آوردن توابع عضویت بهینه در سیستم استنتاج فازی، از الگوریتم جستجوی گرانشی برای تعدیل توابع عضویت استفاده می‌شود. در انتها، پروتکل پیشنهادی با استفاده از نرم‌افزار متلب شبیه‌سازی شده و با روش‌های مسیریابی دیگر مانند AODV، VANET QoS-OLSR و الگوریتم زنبورعسل مقایسه می‌شود که نتایج به‌دست‌آمده نشان می‌دهد این الگوریتم نرخ تحویل بسته بیشتر و تأخیر انتها به انتهای کمتری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of the Bee algorithm based on fuzzy set theory and gravitational search algorithm in VANETs

نویسندگان [English]

  • H. Fatemidokht 1
  • marjan koocheki 2
1 Department of Applied Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
2 Department of Computer Science, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

In this paper, a new protocol to select cluster-heads and improve the Bee algorithm in order to routing in Vehicular Ad Hoc Networks (VANETs), which utilizes fuzzy set theory, is proposed. As regards the rapid topology change and congestion in VANETs lead to links failure, the proposed protocol calculates the validity value of each node and link based on the connectivity and the congestion level of the links of the route. Despite the importance of achieving optimal membership function in fuzzy inference system, Gravitational Search Algorithm (GSA) is employed to tune the fuzzy membership functions (MFs). Finally, the proposed protocol is simulated by MATLAB and compared with other routing protocols such as AODV, VANET QoS-OLSR and Bee algorithm that experimental results show that this algorithm achieves high data packet delivery ratio and low end to end delay.

کلیدواژه‌ها [English]

  • Vehicular Ad Hoc Networks (VANETs)
  • Swarm Intelligence
  • Clustering
  • Routing
  • Fuzzy set theory
  • Gravitational Search Algorithm (GSA)
  • Validity
[1] S. Al-Sultan, M. M. Al-Doori, A. H. Al-Bayatti and H. Zedan, “A comprehensive survey on vehicular Ad Hoc network,” Network and Computer Applications, vol. 37, pp. 380-392, 2014.
[2] شهرام جمالی و توفان سماپور، «کنترل ازدحام مبتنی بر تخمین در شبکه‌های موردی بی‌سیم،» مجله مهندسی برق دانشگاه تبریز، دوره 43، شماره 1، صفحات 14-1، 1392.
[3] B. T. Sharef, R. A. Alsaqour and M. Ismail, “Vehicular communication ad hoc routing protocols: A survey,” Network and Computer Applications, vol. 40, pp. 363–396, 2014.
[4] B. Mokhtar and M. Azab, “Survey on security issues in Vehicular Ad Hoc Networks,” Alexandria Engineering, 2015, http://dx.doi.org/10.1016/j.aej.2015.07.011.
[5] S. J. Elias. M. N. B. M. Warip, B. Ahmad and A. H. A. Halim, “A comparative study of IEEE 802.11 standards for non-safety spplications on Vehicular Ad Hoc Networks: a congestion control perspective,” Proceedings of the World Congress on Engineering and Computer Science, San Francisco, USA, 2014.
[6] مریم کاکاوند میرزایی و جلیل سیفعلی هرسینی، «طراحی یک مکانیسم تدافعی برای بهبود امنیت در لایه فیزیکی با رویکرد نظریه بازی‌ها: کاربرد در شبکه‌های اقتضایی خودرویی،» مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 1، صفحات 220-211، 1396.
[7] S. Panichpapiboon and W. Pattara-Atikom, “A review of information dissemination protocols for vehicular ad hoc networks,” Communications Surveys & Tutorials, IEEE, vol. 14, pp. 784-798, 2012.
[8] R.S. Bali, N. Kumar and J.J.P.C. Rodrigues, “Clustering in vehicular ad hoc networks: taxonomy, challenges and solutions”, Vehicular Communications, vol. 1, pp. 134-152, 2014.
[9] S. Bitam, A, Mellouk and S. Zeadally, “HyBR: A Hybrid Bio-inspired Bee swarm routing protocol for safety applications in vehicular ad hoc networks (VANETs),” Systems Architecture, vol. 59, pp. 953-967, 2013.
[10] M. R. Jabbarpour, A. Jalooli, E. Shaghaghi, R. M. Noor, L. Rothkrantz, R. H. Khokhar and N. B. Anuar, “Ant-based vehicle congestion avoidance system using vehicular networks,” Engineering Applications of Artificial Intelligence, vol. 36, pp. 303-319, 2014.
[11] S. Bitam and A. Mellouk, “Bee life-based multi constraints multicast routing optimization for vehicular ad hoc networks,” Network and Computer Applications, vol. 36, pp. 981-991, 2013.
[12] H. Dong, X. Zhao, L. Qu, X. Chi and X. Cui, “Multi-hop routing optimization method based on improved ant algorithm for vehicle to roadside network,” Bionic Engineering, vol. 11, pp. 490-496, 2014.
[13] O. A. Wahab, H. Otrok and A. Mourad, “VANET QoS-OLSR: QoS-based clustering protocol for vehicular ad hoc networks,” Computer Communications, vol. 36, pp. 1422-1435, 2013.
[14] D. Karaboga and B. Akay, “A survey: Algorithms simulating bee swarm intelligence,” Artificial Intelligence Review, vol. 31, pp. 61-85, 2009.
[15] S. K. Dhurandher, S. Misra, P. Pruthi, S. Singhal and S. Aggarwal, “Using bee algorithm for peer-to-peer file searching in mobile ad hoc networks,” Network and Computer Applications, vol. 34, pp. 1498-1508, 2011.
[16] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, pp. 338–353, 1965.
[17] اسفندیار اسلامی، منطق فازی و کاربردهای آن، دانشگاه شهید باهنر کرمان، چاپ اول، 1391.
[18] L. A. Zadeh, Fuzzy Logic Toolbox for use with MATLAB, MathWorks, 2001.
[19] E. Rashedi, H. Nezamabadi-pour and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Information Sciences, vol. 179, pp. 2232-2248, 2009.
[20] M. Kuchaki  Rafsanjani and H. Fatemidokht, “FBeeAdHoc:  A  secure  routing  protocol  for  BeeAdHoc  based  on  fuzzy logic  in  MANETs,” Electronics  and Communications (AEÜ), vol. 69, pp. 1613-1621, 2015.
[21] H. Fatemidokht and M. Kuchaki Rafsanjani, “F-Ant: An effective routing protocol for ant colony optimization based on fuzzy logic in vehicular ad hoc networks ,” Neural Computing and Applications, DOI: 10.1007/s00521-016-2631-y, (Accepted).
[22] http://en.wikipedia.org/wiki/Bandwidth (computing)
[23] S. Chatterjee and S. Das, “Ant colony optimization based enhanced dynamic source routing algorithm for mobile Ad-hoc network,” Information Sciences, vol. 295, pp. 67–90, 2015.
[24] S. Muthukaruppan and M. J. Er, “A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease,” Expert Systems with Applications, vol. 39, pp. 11657-11665, 2012.
[25] H. F. Wedde, M. Farooq, T. Pannenbaecker and B. Vogel, “BeeAdHoc: An energy efficient routing algorithm for mobile ad hoc networks inspired by bee behavior,” Proceedings of the ACM Genetic and Evolutionary Computation Conference, pp.153-160, 2005.
[26] A. Cervin, D. Henriksson and M. Ohlin, TrueTime 2.0 beta-Reference Manual, Department of Automatic Control Lund University, 2010.
[27] S. K. Shah, D. D. Vishwakarma and S. J. Rane, “Graphical user interface based SOFTAODV simulator for WANET using MATLAB/TrueTime,” Computer Applications, vol. 46, pp. 34-37, 2012.
[28] D. Krajzewicz, J. Erdmann, M. Behrisch and L. Bieker, “Recent development and applications of SUMO—Simulation of Urban Mobility,” Advances in Systems and Measurements, vol. 5, pp. 128–138, 2012.