طراحی یک مبدل واسط چندسطحی خازن‌شناور برای ریزشبکه‌های هیبرید فشارمتوسط

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه شهید بهشتی

2 دانشکده مهندسی برق و کامپیوتر- دانشگاه شهید بهشتی

چکیده

در این مقاله، یک مبدل واسط بهبودیافته مبتنی بر مبدل چندسطحی مالتی‌سل خازن‌های شناور به منظور اتصال زیرشبکه‌های ac و dc یک ریزشبکه هیبرید فشارمتوسط، پیشنهاد شده است. ازجمله مهم‌ترین مزایای مبدل واسط پیشنهادی در مقایسه با مبدل‌های مرسوم می‌توان به افزایش در تعداد سطوح ولتاژ خروجی به‌همراه کاهش اندازه فیلتر، افزایش در تعداد حالت‌های دست‌یابی به سطوح ولتاژ مورد نظر،کاهش سطح ولتاژ و توان تجهیزات و خودتنظیمی طبیعی ولتاژ لینک dc و خازن‌های شناور اشاره نمود. مبدل چندسطحی پیشنهادی می‌تواند محدودیت‌های تبادل توان بین زیرشبکه‌های ac و dc را حداقل نماید. در این صورت پیچیدگی‌های کنترلی سیستم هیبرید به‌صورت قابل‌توجهی کاهش خواهد یافت. مبدل واسط براساس جهت تبادل توان هر دو نقش اینورتری و یکسوکنندگی را در سیستم هیبرید ایفا می‌نماید و می‌تواند کیفیت توان سیستم را به‌ویژه در حالت جزیره‌ای بهبود بخشد. هم‌چنین قابلیت جالب توجه مبدل واسط در تثبیت ولتاژ لینک و باس dc زیرشبکه dc در عین حفظ کیفیت شکل‌موج‌های خروجی در بخش ac، ازجمله ویژگی‌های جالب توجه ساختار پیشنهادی می‌باشد. برای دست‌یابی به مزایای اشاره‌شده یک سیستم کنترلی بهبودیافته نیز برای مبدل واسط پیشنهاد شده است. ساختار پیشنهادی در نرم‌افزار PSCAD/EMTDC شبیه‌سازی شده و نتایج شبیه‌سازی جهت تأیید عملکرد و مزایای ساختار پیشنهادی ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Designing of a FCM Multilevel Interlinking Converter for Medium Voltage Hybrid Microgrids

نویسندگان [English]

  • M. Khederzadeh 1
  • M. Sadeghi 2
1 Faculty of Electrical Engineering, Shahid Beheshti University, 16765-1719, Tehran, Iran
2 Faculty of Electrical Engineering, Shahid Beheshti University, 16765-1719, Tehran, Iran
چکیده [English]

This paper presents an improved Flying Capacitor based multilevel converter to link ac and dc subgrids of a hybrid Medium Voltage )MV ( microgrid. Increase in the number of output voltage levels with lower size of filters, increase in the number of combinations to obtain a desired voltage level (redundancy), lower voltage and power rating of components and natural self-balancing of flying capacitors and dc link voltage compared to other conventional converters are the main properties of proposed interlinking converter. The proposed multilevel converter can decrease the limitations on power transfer between ac and dc subgrids, which can significantly complicate the power management and control of hybrid systems. The interlinking converter plays both inverter-based and rectifier-based roles in hybrid system, depending on the power transfer direction. Multilevel based interlinking converters can improve the power quality of hybrid system especially during islanded modes. Furthermore, a modified control strategy has been presented for the interlinking converter. The proposed structure is simulated using PSCAD/EMTDC software and simulation results are presented to validate the effectiveness and advantages of the proposed configuration

کلیدواژه‌ها [English]

  • Distributed generators (DGs)
  • flying capacitor multicell (FCM) converter
  • hybrid ac/dc microgrid (MG)
  • interlinking converter
  • medium voltage
[1] D.E. Olivares, A. Mehrizi-Sani,  A.H. Etemadi,  C.A. Canizares, R. Iravani, M. Kazerani,  A.H. Hajimiragha,  O. Gomis-Bellmunt,  M. Saeedifard,  R. Palma-Behnke,  G.A. Jimenez-Estevez and N.D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, Jul. 2014.
 [2] A. Karabiber, C. Keles, A. Kaygusuz  and B. Alagoz, “An approach for the integration of renewable distributed generation in hybrid DC/AC microgrids,” Renewable Energy Elsevier, vol. 52, no. 1, pp. 251–259, Apr. 2013.
[3] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power converters in AC microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, Nov. 2012.
[4] X. Liu, P. Wang, and P. C. Loh, “A hybrid AC/DC microgrid and Its coordination control,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278–286, 2011.
[5] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. Vicuña, and M. Castilla., “Hierarchical control of droop-controlled ac and dc microgrids—a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158–172, Jan. 2011.
[6] H. H. Huang, C. Y. Hsieh, J. Y. Liao, and K. H. Chen, “Adaptive droop resistance technique for adaptive voltage positioning in boost dc-dc converters,” IEEE Trans. Power Electron., vol. 26, no. 7, pp. 1920–1932, 2011.
[7] P. T. Baboli, M. Shahparasti, M. ParsaMoghaddam, M. R. Haghifam and M. Mohamadian, “Energy management and operation modeling of hybrid AC–DC microgrid,” IET Gener. Transm. Distrib., vol. 8, no. 10, pp. 1700–1711, Mar. 2014.
[8] N. Eghtedarpour and E. Farjah, “Power control and management in a hybrid AC/DC microgrid,” IEEE Trans. Smart Grid, to be published.
[9] X. Lu, J. M. Guerrero, K. Sun, J. C. Vasquez, and L. Huang, “Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 683–692, 2014.
[10] A. J. Roscoe, S. J. Finney, and G. M. Burt, “Tradeoffs between AC power quality and DC bus ripple for 3-phase 3-wire inverter-connected vevices within microgrids,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 674–688, Mar. 2011.
[11] M. khederzadeh, M. Saedghi, “Virtual active power filter: A notable feature for hybrid AC/DC microgrids,” IET Gen., Trans. and Dis., (GTD), vol. 10, no. 10. 2016, to be published.
[12] R. Majumder, “A hybrid microgrid with DC connection at Back to Back converters,” IEEE Trans. Smart Grid, to be published.
[13] A. Kahrobaeian and Y.A.-R. I. Mohamed, “Stability analysis and control of medium-voltage micro-grids with dynamic loads,” in Proc. IEEE PES conference, 2013, pp. 1–5.
[14] H. Li, W. Li, M. Luo, A. Monti, and F. Ponci, “Design of smart MVDC power grid protection,” IEEE Trans. Instrum. Measur., vol. 60, no. 9, pp. 3035–3046, Sep. 2011.
[15] M. Sadeghi, A. Nazarloo, S. H. Hosseini, E. Babaei, “A new DSTATCOM topology base on Stacked Multicell converter,” 2nd PEDSTC conference, Tehran, 2011 pp.205-211.
[16] M. Hamzeh, A. Ghazanfari, H. Mokhtari, and H. Karimi, “Integrating hybrid power source into an islanded MV microgrid using CHB multilevel inverter under unbalanced and nonlinear load conditions,” IEEE Trans. Energ. Convers., vol. 28, no. 3, pp. 643–651, Sep. 2013.
[17] M. Sadeghi, S.H. Hosseini, R. Alizadeh, M. H. Banaei, “A new mixed Stacked Multicell converter with interesting advantages”, IET power elect. Syst., (PEL), vol. 5, no. 8, pp. 1298–1304. 2012.
[18] M .Agha Shafiyi, M. Khederzadeh, M. Sadeghi, “A Grid-connected PV Power Supply based on Flying Capacitor multicell converter with modified MPPT based Control for Active Power Filtering”, in Proc. 2nd International  ICREDG conference, Tehran, Iran, , pp. 504-509, 2012.
[19] محسن رحیمی و محمدرضا اسماعیلی، «طراحی کنترل‌کننده توان و بهبود میرایی نوسانات پیچشی در توربین بادی DFIG-710kW نصب شده در سایت بینالود»، مجله مهندسی برق دانشگاه تبریز، جلد 64، شماره 6، زمستان 95.
[20] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486–494, Apr. 2006.
[21] P. C. Loh, D. Li, Y. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with ac and dc subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214–2223, 2013.
[22] P. C. Loh, D. Li, Y. Chai, and F. Blaabjerg, “Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 584–592, May./Jun. 2013.
[23] سیدعباس صارمی حصاری، محسن حمزه، و احمد سالم‌نیا، «بهبود عملکرد دینامیکی و استاتیکی سیستم تقسیم توان در ریزشبکه‌ها در حالت جزیره‌ای»، مجله مهندسی برق دانشگاه تبریز، جلد ۴۶، شماره ۱، بهار ۱۳۹۵.