یک فلیپ فلاپ غیر فرار دو حالته مبتنی بر اثر برهمکنش اسپین برای تحقق محاسبات غیر فرار

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی کامپیوتر، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 دانشگاه شهید باهنر کرمان

چکیده

در مدارهای محاسباتی با قطع ناگهانی منبع ولتاژ، داده ها از دست می روند و نیاز است محاسبات مجددا انجام شوند. این امر باعث کاهش سرعت محاسبات و افزایش توان مصرفی می گردد. این مساله در کاربردهایی مانند اینترنت اشیا که از باطری تغذیه می کنند اهمیت بیشتری پیدا می‌کند. اخیرا استفاده از فلیپ فلاپ های غیر فرار در مدارهای محاسباتی بسیار مورد توجه قرار گرفته است. در مدارهای غیرفراری که تاکنون پیشنهاد شده است از یک مدار پشتیبان گیر مجزا مبتنی برفلیپ فلاپ غیرفرار استفاده می‌شود که در فاصله‌های زمانی مشخص، عمل ذخیره سازی داده‌ها را روی تراشه انجام می‌دهد. اما استفاده از مدار پشتیبان گیر مجزا، در نهایت منجر به افزایش توان مصرفی کل، سطح اشغال شده، و کاهش سرعت محاسبات می گردد. علاوه براین، مدار پشتیبان گیر به سیگنال های کنترلی خارجی نیازمند است که پیچیدگی سیستم را افزایش می دهد. برای حل این مشکلات، در این مقاله یک فلیپ فلاپ غیر فرار دوحالته، با قابلیت پشتیبان گیری همزمان و غیرهمزمان از داده پیشنهاد شده است که برای تحقق محاسبات غیرفرار، از قطعات mCell استفاده می‌کند. فلیپ فلاپ پیشنهاد شده برای عملیات پشتیبان گیری و بازیابی، انرژی در سطح fJ و تاخیری در سطح ps دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Spin Hall Effect-Based Dual Mode Nonvolatile Flip-Flop for Realizing Nonvolatile Computing

نویسنده [English]

  • S. Mofidi 1
1 Department of Computer Engineering, Shahid Bahonar University of Kerman (SBUK), Kerman, Iran
2
چکیده [English]

In computing circuits, when the voltage source is suddenly cut off, data is lost and calculations need to be performed again. This reduces the speed of calculations and increases power consumption. This issue becomes more important in applications that are powered by batteries such as "Internet of Things". Recently, the use of non-volatile flip-flops in computing circuits has received much attention. In non-volatile circuits that have been proposed so far, a separate backup circuit based on a non-volatile flip-flop is used. This circuit performs data storage on the chip at specific time intervals. But the use of a separate backup circuit ultimately leads to an increase in the total power consumption, the occupied area, and a decrease in the calculation speed. In addition, the backup circuit requires external control signals, which results in increasing the complexity of the system. To solve these problems, in this paper, a double mode non-volatile flip-flop with both simultaneous and asynchronous backup of data is proposed, in which mCell devices are used to realize non-volatile calculations. The proposed flip-flop for backup and recovery operations, has the energy of fJ level and the delay of ps level.

کلیدواژه‌ها [English]

  • Data backup
  • data restore
  • magnetic tunnel junction
  • hysteresis
  • non-volatility
  • non-volatile flip-flop
[1] رامین رجایی «طراحی یک فلیپ فلاپ کم توان، پرسرعت و مصون از خطای نرم برای فن آوری های نانومتری‎»، مجله مهندسی برق دانشگاه تبریز، دوره 50، شماره 1، صفحات 137-146، 1399.
[2] بهشید شایسته، وصال حکمی، سید اکبر مصطفوی، احمد اکبری « ارائه روشی نوین برای محاسبه اعتماد در کاربردهای اینترنت اشیاء»، مجله مهندسی برق دانشگاه تبریز، دوره 50، شماره 2، صفحات 755 - 743 ، 1399.
[3] Guo, J. Yin, Y. Bai, D. Zhu, K. Shi, G. Wang, K. Cao, and W. Zhao, ‘‘Spintronics for energy-efficient computing: An overview and outlook,’’ Proc. IEEE, vol. 109, no. 8, pp. 1398–1417, Aug. 2021.
[4] Barla, V. K. Joshi, and S. Bhat, ‘‘A novel low power and reduced transistor count magnetic arithmetic logic unit using hybrid STTMTJ/CMOS circuit,’’ IEEE Access, vol. 8, pp. 6876–6889, 2020.
[5] Thapliyal, F. Sharifi, and S. D. Kumar, ‘‘A Highly Reliable, Dynamic Logic-Based Hybrid MTJ/CMOS Magnetic Full Adder for High-Performance and Low-Power Application,’’ IEEE Transactions on Magnetics, vol. 58, no. 5, pp. 1–8, 2022.
[6] Raouf and S. Timarchi, ‘‘Non-volatile and high-performance cascadable spintronic full-adder with no sensitivity to input scheduling,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 70, no. 6, pp. 2236–2240, Jun. 2023.
[7] Yang, K. He, Z. Zhang, and Y. Lu, ‘‘A novel computing-in-memory platform based on hybrid spintronic/CMOS memory. IEEE Transactions on Electron Devices, vol. 69, no. 4, pp.1698-1705, 2022.
[8] Jamshidi, A.Patooghy, and M.Fazeli, ‘‘MagCiM: A Flexible and Non-Volatile Computing-in-Memory Processor for Energy-Efficient Logic Computation,’’ IEEE Access, vol. 10, pp.35445-35459, 2022.
[9] Wang, Y. Liu, C. Wang, Z. Li, X. Sheng, H. G. Lee, N. Chang, and H. Yang, ‘‘Storage-less and converter-less photovoltaic energy harvesting with maximum power point tracking for Internet of Things,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 2, pp. 173–186, Feb. 2016.
[10] Jabeur, G. Di Pendina, F. Bernard-Granger, and G. Prenat, “Spin orbit torque non-volatile flip-flop for high speed and low energy applications,” IEEE electron device letters, vol. 35, no. 3, pp. 408–410, 2014.
[11] Wang, W. Zhao, E. Deng, Y. Zhang, and J.-O. Klein, “Magnetic non-volatile flip-flop with spin-hall assistance,” physic status solidi (RRL)–Rapid Research Letters, vol. 9, no. 6, pp. 375–378, 2015.
[12] Bishnoi, F. Oboril, and M. B. Tahoori, “Non-volatile non- shadow flip-flop using spin orbit torque for efficient normally-off computing,” in 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2016, pp. 769–774.
[13] Seo, X. Fong, and K. Roy, “Fast and disturb-free nonvolatile flip-flop using complementary polarizer mtj,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 4 pp. 1573–1577, 2016.
[14] Verma, R. Paul, and M. Shukla, “Non-volatile latch compatible with static and dynamic CMOS for logic in memory applications,” IEEE Transactions on Magnetics,  vol. 58, no. 4, pp. 1–8, 2022.
[15] Madhura, “A review on low power vlsi design models in various circuits,” J. Electron, vol. 4, pp.74-81, 2022.
[16] Rangaprasad, VK.Joshi, “A Fully Non-Volatile Reconfigurable Magnetic Arithmetic Logic Unit Based on Majority Logic,” IEEE Access, vol. 11, pp. 118944-118961, 2023.
[17] Shukla, P. Kumar, and P. K. Misra, “An energy efficient, mismatch tolerant offset compensating hybrid MTJ/CMOS magnetic full adder,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 11, pp. 4548–4552, Nov. 2022.
[18] Ali, F. Li, S. Y. Lua, and C.-H. Heng, “Compact spin transfer torque non-volatile flip flop design for power-gating architecture,” in 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). IEEE, 2016, pp. 119–122.
[19] Mitchell, M. Hunt, C. McCartney, and F. Ho, “Implementation of low-power, non-volatile latch utilising ferroelectric transistor,” Electronics Letters, vol. 51, no. 23, pp. 1884–1886, 2015.
[20] Jamshidi, “NVRH-LUT: A nonvolatile radiation-hardened hybrid MTJ/CMOS-based look-up table for ultra low power and highly reliable FPGA designs.” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 27, no. 6, pp.4486-4501, 2019.
[21] Amirany, K. Jafari, and M.H. Moaiyeri, “High-performance radiation-hardened spintronic retention latch and flip-flop for highly reliable processors,”  IEEE Transactions on Device and Materials Reliability, vol. 21, no. 2, pp.215-223, 2021.
[22] Ryu, J. Kim, J. Jung, J. P. Kim, S. H. Kang, and S.-O. Jung, “A magnetic tunnel junction based zero standby leakage current retention flip-flop,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 11, pp. 2044–2053, 2011.
[23] Lakys, W. Zhao, J.-O. Klein, and C. Chappert, “Low power, high reliability magnetic flip-flop,” Electronics letters, vol. 46, no. 22, pp. 1493–1494, 2010.
[24] Rajaei, “A reliable, low power and nonvolatile mtj-based flipflop for advanced nanoelectronics,” Journal of Circuits, Systems and Computers, vol. 27, no. 13, p. 1850205, 2018.
[25] Kimura, T. Fuchikami, K. Maramoto, Y. Fujimori, S. Izumi, H. Kawaguchi, and M. Yoshimoto, “A 2.4 pj ferroelectric-based non-volatile flip-flop with 10-year data retention capability,” in 2014 IEEE Asian Solid-State Circuits Conference (A-SSCC). IEEE, 2014, pp. 21–24.
[26] Qazi, A. Amerasekera, and A. P. Chandrakasan, “A 3.4-pj feram-enabled d flip-flop in 0.13um cmos for nonvolatile processing in digital systems,” IEEE Journal of Solid-State Circuits, vol. 49, no. 1, pp. 202–211, 2013.
[27] Izumi, H. Kawaguchi, M. Yoshimoto, H. Kimura, T. Fuchikami, K. Marumoto, and Y. Fujimori, “A ferroelectric based non-volatile flip-flop for wearable healthcare systems,” in 2015 15th NonVolatile Memory Technology Symposium (NVMTS). IEEE, 2015, pp. 1–4.
[28] Barla,V. K. Joshi, and S. Bhat, ‘‘Fully nonvolatile hybrid full adder based on SHE+STT-MTJ/CMOS LIM architecture,’’ IEEE Trans. Magn., vol. 58, no. 9, pp. 1–11, Sep. 2022.
[29] Na, K. Ryu, J. Kim, S.-O. Jung, J. P. Kim, and S. H. Kang, “High- performance low-power magnetic tunnel junction based non- volatile flip-flop,” in 2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2014, pp. 1953–1956.
[30] M. Bromberg, D.H. Morris, L. Pileggi, and J.G. Zhu, “Novel STT-MTJ Device Enabling All-Metallic Logic Circuits,” IEEE transactions on Magnetics, pp. 3215-3218, 2012.
[31] Kumar, D. Divyanshu, D. Khan, S. Amara, and Y. Massoud, ‘‘Polymorphic hybrid CMOS-MTJ logic gates for hardware security applications,’’ Electronics, vol. 12, no. 4, p. 902, Feb. 2023.
[32] Ma, S. Li, V. Narayanan, and Y. Xie, “Nonvolatile processor architecture exploration for energy-harvesting application scenarios,” in Embedded, Cyber-Physical, and IoT Systems. Springer, 2020, pp. 175–202.
[33] Roohi and R. F. DeMara, “Nv-clustering: Normally-off computing using non-volatile datapaths,” IEEE Transactions on Computers, vol. 67, no. 7, pp. 949–959, 2018.
[34] Ali, F. Li, S. Y. Lua, and C.-H. Heng, “Energy-and area efficient spin–orbit torque nonvolatile flip-flop for power gating architecture,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 4, pp. 630–638, 2018.
[35] Wang, Z. Wang, Y. Xu, B. Wu, and W. Zhao, “Erase-hidden and drivability-improved magnetic non-volatile flip-flops with nand spin devices,” IEEE Transactions on Nanotechnology, vol. 19, pp. 446–454, 2020.
[36] Park, “Hybrid non-volatile flip-flops using spin-orbit-torque (sot) magnetic tunnel junction devices for high integration and low energy power-gating applications,” Electronics, vol. 9, no. 9, p. 1406, 2020.
[37] Garg, and S. Wairya, “Performance Evaluation of Full Adder Using Magnetic Tunnel Junction,” In Proceedings of International Conference on Recent Trends in Computing, pp. 517-526, 2021.
[38] Rangaprasad S,VK. Joshi and BK. Kaushik, “A fully non-volatile reconfigurable magnetic decoder,” Microelectronics Journal, vol. 26, no. 2, pp. 294–307, 2023.
[39] Jamshidi, and M.Fazeli, ‘‘Pure magnetic logic circuits: A reliability analysis,’’ IEEE Transactions on Magnetics, vol. 54, no. 10, pp.1-10, 2018.