کنترل و مدیریت زمان واقعی ریزشبکه با منابع تولید پراکنده و با استفاده از مدل جامع پیل سوختی غشای تبادل پروتون

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران

2 استاد، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران

چکیده

در این مقاله، یک روش کنترلی زمان واقعی برای کنترل و مدیریت ریزشبکه‌ی متصل به شبکه دارای پیل سوختی، پنل‌های فتوولتائیک به عنوان منابع پراکنده و باتری (سیستم ذخیره‌سازی انرژی) پیشنهاد شده است. این روش کنترلی بر اساس کنترل پیش‌بین مبتنی بر مدل، مدلسازی شده و از الگوریتم بهینه‌سازی ازدحام ذرات برای بهینه‌سازی استفاده شده است. کنترل پیش‌بین امکان استفاده از داده‌های بدست آمده بر اساس شبیه‌سازی عملکرد ریزشبکه به عنوان داده‌های پیش‌بینی شده در هر نمونه را فراهم می‌کند. با استفاده از این داده‌های پیش‌بینی شده و داده‌های دریافتی از اندازه‌گیری‌های لحظه‌ای، کنترل ریزشبکه به صورت زمان واقعی انجام می‌شود. هدف از این روش، کنترل و مدیریت یکپارچه ریزشبکه، کاهش تغییرات در وضعیت شارژ باتری و سطح هیدروژن پیل سوختی است که باعث کاهش استفاده بی‌رویه از باتری و پیل سوختی و استهلاک باتری و پیل سوختی می‌شود. همچنین، استفاده از توان الکتریکی تولیدی توسط منابع تولید پراکنده و پیل سوختی با هدف کاهش خرید انرژی الکتریکی از شبکه اصلی و استفاده از باتری برای کاهش نوسانات در توان پیل سوختی می‌باشد که در نتایج شبیه‌سازی این اهداف بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Real-time Control and Management of a Microgrid, with Dispersed Generation Resources, Utilizing a Integrated Proton Exchange Membrane Fuel Cell Model

نویسندگان [English]

  • S. Roudnil 1
  • S. Ghassem Zadeh 2
1 Electrical and Computer Engineering Faculty - Power Department, University of Tabriz, Tabriz, Iran.
2 Electrical and Computer Engineering Faculty - Power Department, University of Tabriz, Tabriz, Iran.
چکیده [English]

In this paper, a real-time control method is proposed for the energy management of a grid-connected microgrid including fuel cell, photovoltaic panels (PV) as distributed energy resources (DERs), and battery as energy storage system (ESS). The control method is based on model predictive control (MPC) and optimized using the particle swarm optimization (PSO) algorithm. By modeling the control method, predictive data obtained from simulating microgrid performance at each instance are utilized. Real-time microgrid control is then performed by combining these predicted data with real-time measurements. The purpose of this control method is to achieve integrated management of the microgrid and reduce changes in the battery’s state of charge (SoC) and fuel cell’s level of hydrogen (LoH). This reduction helps minimize excessive usage of the battery and fuel cell, thus reducing their depreciation. Moreover, the proposed control method enables PV and fuel cell to supply most of the required demand, with excess electric power being sold to the main grid. Additionally, the battery functions to absorbs power fluctuations, as demonstrated in the simulation results investigating these objectives.

کلیدواژه‌ها [English]

  • Fuel cell (FC)
  • Integrated fuel cell model
  • Real-time microgrid management
  • Fuel cell with distributed generation resources
  • Model predictive control and fuel cell
[1] E. Agency, ‘International Energy Agency (IEA) World Energy Outlook 2022’, Https://Www.Iea.Org/Reports/World-Energy-Outlook-2022/Executive-Summary, 2022.
[2] F. Benavente, A. Lundblad, P. E. Campana, Y. Zhang, S. Cabrera, and G. Lindbergh, ‘Photovoltaic/battery system sizing for rural electrification in Bolivia: Considering the suppressed demand effect’, Appl. Energy, vol. 235, no. February 2018, pp. 519–528, 2019, doi: 10.1016/j.apenergy.2018.10.084.
[3] Y. Sahri et al., ‘Energy management system for hybrid PV/wind/battery/fuel cell in microgrid-based hydrogen and economical hybrid battery/super capacitor energy storage’, Energies, vol. 14, no. 18, 2021, doi: 10.3390/en14185722.
[4] D. Akinyele, E. Olabode, and A. Amole, ‘Review of fuel cell technologies and applications for sustainable microgrid systems’, Inventions, vol. 5, no. 3, pp. 1–35, 2020, doi: 10.3390/inventions5030042.
[5] A. Arsalis, G. E. Georghiou, and P. Papanastasiou, ‘Recent Research Progress in Hybrid Photovoltaic–Regenerative Hydrogen Fuel Cell Microgrid Systems’, Energies, vol. 15, no. 10, 2022, doi: 10.3390/en15103512.
[6] K. Kumar, M. Alam, and V. Dutta, ‘Energy management strategy for integration of fuel cell-electrolyzer technologies in microgrid’, Int. J. Hydrogen Energy, vol. 46, no. 68, pp. 33738–33755, 2021, doi: 10.1016/j.ijhydene.2021.07.203.
[7] V. Suresh, N. Pachauri, and T. Vigneysh, ‘Decentralized control strategy for fuel cell/PV/BESS based microgrid using modified fractional order PI controller’, Int. J. Hydrogen Energy, vol. 46, no. 5, pp. 4417–4436, 2021, doi: 10.1016/j.ijhydene.2020.11.050.
[8] A. A. Kamel, H. Rezk, N. Shehata, and J. Thomas, ‘Energy management of a dc microgrid composed of photovoltaic/fuel cell/battery/supercapacitor systems’, Batteries, vol. 5, no. 3, 2019, doi: 10.3390/BATTERIES5030063.
[9] S. Vasantharaj, V. Indragandhi, V. Subramaniyaswamy, Y. Teekaraman, R. Kuppusamy, and S. Nikolovski, ‘Efficient control of dc microgrid with hybrid pv—fuel cell and energy storage systems’, Energies, vol. 14, no. 11, 2021, doi: 10.3390/en14113234.
[10] Y. Zhang and W. Wei, ‘Model construction and energy management system of lithium battery, PV generator, hydrogen production unit and fuel cell in islanded AC microgrid’, Int. J. Hydrogen Energy, vol. 45, no. 33, pp. 16381–16397, 2020, doi: 10.1016/j.ijhydene.2020.04.155.
[11] B. Benlahbib et al., ‘Experimental investigation of power management and control of a PV/wind/fuel cell/battery hybrid energy system microgrid’, Int. J. Hydrogen Energy, vol. 45, no. 53, pp. 29110–29122, 2020, doi: 10.1016/j.ijhydene.2020.07.251.
[12] Q. Meng, C. Su, H. Niu, Z. Hou, and M. Ashourian, ‘Optimal impacts of combined fuel-cell/CHP/battery and power microgrid with real-time energy management’, Energy Sources, Part A Recover. Util. Environ. Eff., vol. 45, no. 3, pp. 6596–6619, 2023, doi: 10.1080/15567036.2019.1675812.
[13] M. M. Samy and K. A. Alkhuzaii, ‘Optimization and Sizing of an Island Microgrid Based on Photovoltaic/Fuel Cell (Pv/Fc) in Ksa’, Yanbu J. Eng. Sci., vol. 17, no. 1, 2019, doi: 10.53370/001c.23728.
[14] S. N. Mtolo and A. K. Saha, ‘A Review of the Optimization and Control Strategies for Fuel Cell Power Plants in a Microgrid Environment’, IEEE Access, vol. 9, pp. 146900–146920, 2021, doi: 10.1109/ACCESS.2021.3123181.
[15] T. Zeng et al., ‘Fast identification of power change rate of PEM fuel cell based on data dimensionality reduction approach’, Int. J. Hydrogen Energy, vol. 44, no. 38, pp. 21101–21109, 2019, doi: 10.1016/j.ijhydene.2019.01.034.
[16] T. A. Fagundes, G. H. F. Fuzato, P. G. B. Ferreira, M. Biczkowski, and R. Q. Machado, ‘Fuzzy Controller for Energy Management and SoC Equalization in DC Microgrids Powered by Fuel Cell and Energy Storage Units’, IEEE J. Emerg. Sel. Top. Ind. Electron., vol. 3, no. 1, pp. 90–100, 2021, doi: 10.1109/jestie.2021.3088419.
[17] A. Aguilera Gonzalez, M. Bottarini, I. Vechiu, L. Gautier, L. Ollivier, and L. Larre, ‘Model Predictive Control for the Energy Management of A Hybrid PV/Battery/Fuel Cell Power Plant’, SEST 2019 - 2nd Int. Conf. Smart Energy Syst. Technol., 2019, doi: 10.1109/SEST.2019.8849051.
[18] C. Ziogou, S. Voutetakis, M. C. Georgiadis, and S. Papadopoulou, ‘Model predictive control (MPC) strategies for PEM fuel cell systems – A comparative experimental demonstration’, Chem. Eng. Res. Des., vol. 131, pp. 656–670, 2018, doi: 10.1016/j.cherd.2018.01.024.
[19] F. Garcia-Torres, A. Zafra-Cabeza, C. Silva, S. Grieu, T. Darure, and A. Estanqueiro, ‘Model predictive control for microgrid functionalities: Review and future challenges’, Energies, vol. 14, no. 5, pp. 1–26, 2021, doi: 10.3390/en14051296.
[20] F. Alavi, N. Van De Wouw, and B. De Schutter, ‘Power Scheduling of Fuel Cell Cars in an Islanded Mode Microgrid with Private Driving Patterns’, IEEE Trans. Control Syst. Technol., vol. 28, no. 4, pp. 1393–1403, 2020, doi: 10.1109/TCST.2019.2911491.
[21] A. Ferrara, M. Okoli, S. Jakubek, and C. Hametner, ‘Energy management of heavy-duty fuel cell electric vehicles: Model predictive control for fuel consumption and lifetime optimization’, IFAC-PapersOnLine, vol. 53, no. 2, pp. 14205–14210, 2020, doi: 10.1016/j.ifacol.2020.12.1053.
[22] D. F. Pereira, F. D. C. Lopes, and E. H. Watanabe, ‘Nonlinear Model Predictive Control for the Energy Management of Fuel Cell Hybrid Electric Vehicles in Real Time’, IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3213–3223, 2021, doi: 10.1109/TIE.2020.2979528.
[23] D. Shen, C. C. Lim, and P. Shi, ‘Robust fuzzy model predictive control for energy management systems in fuel cell vehicles’, Control Eng. Pract., vol. 98, no. January, p. 104364, 2020, doi: 10.1016/j.conengprac.2020.104364.
[24] Q. Guo, Z. Zhao, P. Shen, and P. Zhou, ‘Optimization management of hybrid energy source of fuel cell truck based on model predictive control using traffic light information’, Control Theory Technol., vol. 17, no. 4, pp. 309–324, 2019, doi: 10.1007/s11768-019-9118-1.
[25] W. Xin, E. Xu, W. Zheng, H. Feng, and J. Qin, ‘Optimal energy management of fuel cell hybrid electric vehicle based on model predictive control and on-line mass estimation’, Energy Reports, vol. 8, pp. 4964–4974, 2022, doi: 10.1016/j.egyr.2022.03.194.
[26] G. Bruni, S. Cordiner, V. Mulone, V. Rocco, and F. Spagnolo, ‘A study on the energy management in domestic micro-grids based on model predictive control strategies q’, Energy Convers. Manag., vol. 102, pp. 50–58, 2015, doi: 10.1016/j.enconman.2015.01.067.
[27] G. Bruni, S. Cordiner, V. Mulone, V. Sinisi, and F. Spagnolo, ‘Energy management in a domestic microgrid by means of model predictive controllers’, Energy, vol. 108, pp. 119–131, 2015, doi: 10.1016/j.energy.2015.08.004.
[28]  حسین شایقی، و حمزه آریانپور، “طراحی مقاوم کنترل کننده فازی PID بلادرنگ مبتنی بر الگوریتم بهبودیافته تکامل تفاضلی برای کنترل فرکانس ریزشبکه جزیره ای با در نظر گرفتن عوامل غیرخطی و عدم قطعیت ها،” مهندسی برق (دانشکده فنی دانشگاه تبریز)، vol. 46، no. 3 (پیاپی 77)، pp. 241–256، 1395، [Online]. Available: https://sid.ir/paper/256466/fa
[29]  ج. جنتی and د. نظرپور, ‘مدیریت انرژی پارکینگ هوشمند خودروهای برقی در یک ریزشبکه با در نظر گرفتن اثرات برنامه پاسخ‌گویی بار’, مجله مهندسی برق دانشگاه تبریز, vol. 47, no. 2, pp. 455–467, 2017, [Online]. Available: https://tjee.tabrizu.ac.ir/article_5580.html
[30] A. A. Memon and K. Kauhaniemi, ‘Real-Time Hardware-in-the-Loop Testing of IEC 61850 GOOSE-Based Logically Selective Adaptive Protection of AC Microgrid’, IEEE Access, vol. 9, pp. 154612–154639, 2021, doi: 10.1109/ACCESS.2021.3128370.
[31] C. Bordons, F. Garcia-Torres, and M. A. Ridao, Model Predictive Control of Microgrids. 2020. [Online]. Available: http://link.springer.com/10.1007/978-3-030-24570-2
[32] S. Jahan, M. T. Islam, and S. Chowdhury, ‘Investigation of Power Performance of a PEM Fuel Cell Using MATLAB Simulation’, Malaysian J. Appl. Sci., vol. 5, no. 1, pp. 83–94, 2020, doi: 10.37231/myjas.2020.5.1.230.
[33] E. Crespi, G. Guandalini, G. N. Cantero, and S. Campanari, ‘Dynamic Modeling of a PEM Fuel Cell Power Plant for Flexibility Optimization and Grid Support’, Energies, vol. 15, no. 13, pp. 1–23, 2022, doi: 10.3390/en15134801.
[34] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, ‘Review on model predictive control: an engineering perspective’, Int. J. Adv. Manuf. Technol., vol. 117, no. 5–6, pp. 1327–1349, 2021, doi: 10.1007/s00170-021-07682-3.
[35] X. Chen, W. Cao, Q. Zhang, S. Hu, and J. Zhang, ‘Artificial Intelligence-Aided Model Predictive Control for a Grid-Tied Wind-Hydrogen-Fuel Cell System’, IEEE Access, vol. 8. pp. 92418–92430, 2020. doi: 10.1109/ACCESS.2020.2994577.
[36] V. A. Freire, L. V. R. de Arruda, C. Bordons, and J. J. Marquez, ‘Optimal Demand Response Management of a Residential Microgrid using Model Predictive Control’, IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.3045459.