[1] G. Li, J. Yan, L. Chen, J. Wu, Q. Lin, and Y. Zhang, "Energy consumption optimization with a delay threshold in cloud-fog cooperation computing," IEEE access, vol. 7, pp. 159688-159697, 2019.
[2] X. Niu, S. Shao, C. Xin, J. Zhou, S. Guo, X. Chen, et al., "Workload allocation mechanism for minimum service delay in edge computing-based power internet of things," IEEE Access, vol. 7, pp. 83771-83784, 2019.
[3] M. Abbasi, M. Yaghoobikia, M. Rafiee, A. Jolfaei, and M. R. Khosravi, "Efficient resource management and workload allocation in fog–cloud computing paradigm in IoT using learning classifier systems," Computer Communications, vol. 153, pp. 217-228, 2020.
[4] M. Abbasi, E. M. Pasand, and M. R. Khosravi, "Workload allocation in iot-fog-cloud architecture using a multi-objective genetic algorithm," Journal of Grid Computing, pp. 1-14, 2020.
[5] M. Abbasi, M. Yaghoobikia, M. Rafiee, M. R. Khosravi, and V. G. Menon, "Optimal distribution of workloads in cloud-fog architecture in intelligent vehicular networks," IEEE Transactions on Intelligent Transportation Systems, vol. 22, pp. 4706-4715, 2021.
[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of things: A survey on enabling technologies, protocols, and applications," IEEE communications surveys & tutorials, vol. 17, pp. 2347-2376, 2015.
[7] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, "IoT middleware: A survey on issues and enabling technologies," IEEE Internet of Things Journal, vol. 4, pp. 1-20, 2016.
[8] S. H. Shah and I. Yaqoob, "A survey: Internet of Things (IOT) technologies, applications and challenges," 2016 IEEE Smart Energy Grid Engineering (SEGE), pp. 381-385, 2016.
[9] A. Ometov, O. L. Molua, M. Komarov, and J. Nurmi, "A survey of security in cloud, edge, and fog computing," Sensors, vol. 22, p. 927, 2022.
[10] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, "A survey of mobile cloud computing: architecture, applications, and approaches," Wireless communications and mobile computing, vol. 13, pp. 1587-1611, 2013.
[11] K. Dolui and S. K. Datta, "Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing," in 2017 Global Internet of Things Summit (GIoTS), 2017, pp. 1-6.
[12] A. Yousefpour, G. Ishigaki, and J. P. Jue, "Fog computing: Towards minimizing delay in the internet of things," in 2017 IEEE international conference on edge computing (EDGE), 2017, pp. 17-24.
[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: Vision and challenges," IEEE Internet of Things Journal, vol. 3, pp. 637-646, 2016.
[14] C.-H. Hong and B. Varghese, "Resource Management in Fog/Edge Computing: A Survey," arXiv preprint arXiv:1810.00305, 2018.
[15] Dennis, D. K. a. Gaurkar, Y. a. Gopinath, S. a. Goyal, S. a. Gupta, C. a. Jain, et al. (2022, 2017/9/2). EdgeML: Machine Learning for resource-constrained edge devices (0.4 ed.). Available: https://github.com/Microsoft/EdgeML
[16] س. قاسمی فلاورجانی, م. نعمت بخش, and ب. شاهقلی قهفرخی, "تخصیص وظایف چندهدفه در واگذاری به ابر سیار," مجله مهندسی برق دانشگاه تبریز, vol. 46, pp. 217-232, 2016.
[17] و. ستاری نائینی, ی. سالم, and ع. راشدی, "بهرهگیری از الگوریتم پرش ترکیبی قورباغه جهت کاهش مصرف انرژی مراکز داده ابری از طریق بهینهسازی مدیریت زمانبندی کارها و ترکیب مؤثر ماشینهای مجازی," مجله مهندسی برق دانشگاه تبریز, vol. 48, pp. 687-698, 2018.
[18] H. Wu, L. Chen, C. Shen, W. Wen, and J. Xu, "Online geographical load balancing for energy-harvesting mobile edge computing," in 2018 IEEE International Conference on Communications (ICC), 2018, pp. 1-6.
[19] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, "Fog computing for energy-aware load balancing and scheduling in smart factory," IEEE Transactions on Industrial Informatics, vol. 14, pp. 4548-4556, 2018.
[20] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg, "Generalization in the XCSF Classifier System: Analysis, Improvement, and Extension," Evol. Comput., vol. 15, pp. 133-168, 2007.
[21] J. Holland, L. Booker, M. Colombetti, M. Dorigo, D. Goldberg, S. Forrest, et al., "What Is a Learning Classifier System?," in Learning Classifier Systems. vol. 1813, P. Lanzi, W. Stolzmann, and S. Wilson, Eds., ed: Springer Berlin Heidelberg, 2000, pp. 3-32.
[22] S. W. Wilson, "Classifier fitness based on accuracy," Evol. Comput., vol. 3, pp. 149-175, 1995.
[23] B. Bartin, "Use of learning classifier systems in microscopic toll plaza simulation models," IET Intelligent Transport Systems, vol. 13, pp. 860-869, 2019.
[24] M. R. Karlsen and S. Moschoyiannis, "Evolution of control with learning classifier systems," Applied network science, vol. 3, p. 30, 2018.
[25] M. H. Arif, J. Li, M. Iqbal, and K. Liu, "Sentiment analysis and spam detection in short informal text using learning classifier systems," Soft Computing, vol. 22, pp. 7281-7291, 2018.
[26] E. Alpaydin, Introduction to Machine Learning, 3 ed. Cambridge, MA: MIT Press, 2014.
[27] M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," Science, vol. 349, pp. 255-260, 2015.
[28] B. De Ville and P. Neville, Decision trees for analytics: using SAS Enterprise miner: SAS Institute Cary, NC, 2013.
[29] P.-N. T. M. S. Vipin, "Introduction to data mining," ed, 2006.
[30] J. Xu, L. Chen, and S. Ren, "Online learning for offloading and autoscaling in energy harvesting mobile edge computing," IEEE Transactions on Cognitive Communications and Networking, vol. 3, pp. 361-373, 2017.
[31] R. S. Sutton and A. G. Barto, "Reinforcement learning: An introduction," Robotica, vol. 17, pp. 229-235, 1999.