توسعه مدل‌های کوچک یادگیری ماشین برای توزیع بهینه بارهای کاری در شبکه‌های لبه

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد معماری سیستم‌های کامپیوتری، گروه مهندسی کامپیوتر، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشیار، گروه مهندسی کامپیوتر، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

3 کارشناسی ارشد شبکه‌های کامپیوتری، گروه مهندسی کامپیوتر، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

تعداد دستگاه‌های متصل به شبکه اینترنت اشیاء به سرعت گسترش یافته است. این امر، موجب افزایش قابل توجه بار محاسباتی در شبکه‌ها شده است. برای غلبه بر این چالش، محاسبات ابری به عنوان یک راهکار مناسب ارائه شد. اما محاسبات ابری تأخیر قابل توجهی را برای پردازش بارها متحمل می‌شد. پردازش بارهای کاری در لبه شبکه و به صورت محلی تاخیر را کاهش می‌دهد. اما، به دلیل محدودیت منابع محاسباتی در لبه شبکه، مدیریت منابع و بهینه‌سازی استفاده از آنها از چالش‌های اساسی در پردازش لبه است. بنابراین علاوه بر توزیع بارکاری در لبه شبکه و حفظ تعادل بین انرژی مصرفی و تأخیر، باید محدودیت منابع مانند حافظه مصرفی را در نظر گرفت. در این مقاله، یک روش برخط مبتنی بر سیستم‌های طبقه بندی کننده یادگیری XCS (LCS)، با نام TinyXCS و یک روش برون‌خط مبتنی بر درخت تصمیم با نام TinyDT، برای متعادل کردن مصرف انرژی و کاهش تأخیر در پردازش بارهای کاری با درنظر گرفتن محدودیت حافظه در لبه شبکه پیشنهاد شده است. نتایج آزمایش‌های ما نشان‌دهنده برتری TinyXCS و TinyDT نسبت به روش‌های مشابه است. شبیه‌سازی نشان می‌دهد که روش‌های پیشنهادی می‌توانند علاوه بر توزیع بارکاری، سبب کاهش همزمان تأخیر و انرژی مصرفی و ایجاد مصالحه بین آن‌ها و حافظه مصرفی شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Development of Tiny Machine Learning Models for Optimal Distribution of Workloads at Edge Networks

نویسندگان [English]

  • M.R. Pourhossein 1
  • M. Abbasi 2
  • E. Mohammadi-Pasand 3
1 Computer Engineering Department, Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran.
2 Computer Engineering Department, Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran.
3 Computer Engineering Department, Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran.
چکیده [English]

The number of devices connected to the Internet of Things has been expanded rapidly. This issue has caused a significant increase in the computational load in the networks. To overcome this challenge, cloud computing was presented as a suitable solution. However, cloud computing suffers significant delay to process workloads. Processing workloads at the edge of the network and locally leads to reduced latency. But due to the limitation of computing resources at the edge, managing and optimizing resources is considered one of the main challenges. Therefore, in addition to distributing the workloads at the edge of the network and maintaining the balance between energy consumption and delay, the limitation of resources such as memory consumption should be considered. In this paper, an online method based on XCS learning classifier systems (LCS), named TinyXCS, and an offline method based on decision tree, named TinyDT, are proposed to balance energy consumption and reduce delay in processing workloads considering the memory limitation at edge. The experimental results show the superiority of TinyXCS and TinyDT over similar methods. The simulation shows that in addition to workload distribution, the proposed methods can simultaneously reduce delay and energy consumption and create a compromise between them and memory consumption.

کلیدواژه‌ها [English]

  • Internet of things
  • edge computing
  • machine learning
  • workload distribution
  • quality of service
[1] G. Li, J. Yan, L. Chen, J. Wu, Q. Lin, and Y. Zhang, "Energy consumption optimization with a delay threshold in cloud-fog cooperation computing," IEEE access, vol. 7, pp. 159688-159697, 2019.
[2] X. Niu, S. Shao, C. Xin, J. Zhou, S. Guo, X. Chen, et al., "Workload allocation mechanism for minimum service delay in edge computing-based power internet of things," IEEE Access, vol. 7, pp. 83771-83784, 2019.
[3] M. Abbasi, M. Yaghoobikia, M. Rafiee, A. Jolfaei, and M. R. Khosravi, "Efficient resource management and workload allocation in fog–cloud computing paradigm in IoT using learning classifier systems," Computer Communications, vol. 153, pp. 217-228, 2020.
[4] M. Abbasi, E. M. Pasand, and M. R. Khosravi, "Workload allocation in iot-fog-cloud architecture using a multi-objective genetic algorithm," Journal of Grid Computing, pp. 1-14, 2020.
[5] M. Abbasi, M. Yaghoobikia, M. Rafiee, M. R. Khosravi, and V. G. Menon, "Optimal distribution of workloads in cloud-fog architecture in intelligent vehicular networks," IEEE Transactions on Intelligent Transportation Systems, vol. 22, pp. 4706-4715, 2021.
[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of things: A survey on enabling technologies, protocols, and applications," IEEE communications surveys & tutorials, vol. 17, pp. 2347-2376, 2015.
[7] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, "IoT middleware: A survey on issues and enabling technologies," IEEE Internet of Things Journal, vol. 4, pp. 1-20, 2016.
[8] S. H. Shah and I. Yaqoob, "A survey: Internet of Things (IOT) technologies, applications and challenges," 2016 IEEE Smart Energy Grid Engineering (SEGE), pp. 381-385, 2016.
[9] A. Ometov, O. L. Molua, M. Komarov, and J. Nurmi, "A survey of security in cloud, edge, and fog computing," Sensors, vol. 22, p. 927, 2022.
[10] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, "A survey of mobile cloud computing: architecture, applications, and approaches," Wireless communications and mobile computing, vol. 13, pp. 1587-1611, 2013.
[11] K. Dolui and S. K. Datta, "Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing," in 2017 Global Internet of Things Summit (GIoTS), 2017, pp. 1-6.
[12] A. Yousefpour, G. Ishigaki, and J. P. Jue, "Fog computing: Towards minimizing delay in the internet of things," in 2017 IEEE international conference on edge computing (EDGE), 2017, pp. 17-24.
[13] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: Vision and challenges," IEEE Internet of Things Journal, vol. 3, pp. 637-646, 2016.
[14] C.-H. Hong and B. Varghese, "Resource Management in Fog/Edge Computing: A Survey," arXiv preprint arXiv:1810.00305, 2018.
[15] Dennis, D. K. a. Gaurkar, Y. a. Gopinath, S. a. Goyal, S. a. Gupta, C. a. Jain, et al. (2022, 2017/9/2). EdgeML: Machine Learning for resource-constrained edge devices (0.4 ed.). Available: https://github.com/Microsoft/EdgeML
[16] س. قاسمی فلاورجانی, م. نعمت بخش, and ب. شاهقلی قهفرخی, "تخصیص وظایف چندهدفه در واگذاری به ابر سیار," مجله مهندسی برق دانشگاه تبریز, vol. 46, pp. 217-232, 2016.
[17] و. ستاری نائینی, ی. سالم, and ع. راشدی, "بهره‌گیری از الگوریتم پرش ترکیبی قورباغه جهت کاهش مصرف انرژی مراکز داده ابری از طریق بهینه‌سازی مدیریت زمان‌بندی کارها و ترکیب مؤثر ماشین‌های مجازی," مجله مهندسی برق دانشگاه تبریز, vol. 48, pp. 687-698, 2018.
[18] H. Wu, L. Chen, C. Shen, W. Wen, and J. Xu, "Online geographical load balancing for energy-harvesting mobile edge computing," in 2018 IEEE International Conference on Communications (ICC), 2018, pp. 1-6.
[19] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, "Fog computing for energy-aware load balancing and scheduling in smart factory," IEEE Transactions on Industrial Informatics, vol. 14, pp. 4548-4556, 2018.
[20] P. L. Lanzi, D. Loiacono, S. W. Wilson, and D. E. Goldberg, "Generalization in the XCSF Classifier System: Analysis, Improvement, and Extension," Evol. Comput., vol. 15, pp. 133-168, 2007.
[21] J. Holland, L. Booker, M. Colombetti, M. Dorigo, D. Goldberg, S. Forrest, et al., "What Is a Learning Classifier System?," in Learning Classifier Systems. vol. 1813, P. Lanzi, W. Stolzmann, and S. Wilson, Eds., ed: Springer Berlin Heidelberg, 2000, pp. 3-32.
[22] S. W. Wilson, "Classifier fitness based on accuracy," Evol. Comput., vol. 3, pp. 149-175, 1995.
[23] B. Bartin, "Use of learning classifier systems in microscopic toll plaza simulation models," IET Intelligent Transport Systems, vol. 13, pp. 860-869, 2019.
[24] M. R. Karlsen and S. Moschoyiannis, "Evolution of control with learning classifier systems," Applied network science, vol. 3, p. 30, 2018.
[25] M. H. Arif, J. Li, M. Iqbal, and K. Liu, "Sentiment analysis and spam detection in short informal text using learning classifier systems," Soft Computing, vol. 22, pp. 7281-7291, 2018.
[26] E. Alpaydin, Introduction to Machine Learning, 3 ed. Cambridge, MA: MIT Press, 2014.
[27] M. I. Jordan and T. M. Mitchell, "Machine learning: Trends, perspectives, and prospects," Science, vol. 349, pp. 255-260, 2015.
[28] B. De Ville and P. Neville, Decision trees for analytics: using SAS Enterprise miner: SAS Institute Cary, NC, 2013.
[29] P.-N. T. M. S. Vipin, "Introduction to data mining," ed, 2006.
[30] J. Xu, L. Chen, and S. Ren, "Online learning for offloading and autoscaling in energy harvesting mobile edge computing," IEEE Transactions on Cognitive Communications and Networking, vol. 3, pp. 361-373, 2017.
[31] R. S. Sutton and A. G. Barto, "Reinforcement learning: An introduction," Robotica, vol. 17, pp. 229-235, 1999.