[1]. Deng, J., & Deng, Y. (2021). Information volume of fuzzy membership function. International Journal of Computers Communications & Control, 16(1).
[2]. Nabijonov, R. (2022). Theories of fuzzy sets and their application in face recognition. Innovation in the modern education system.
[3]. Akram, M., & Naz, S. (2019). A novel decision-making approach under complex Pythagorean fuzzy environment. Mathematical and Computational Applications, 24(3), 73.
[4]. Štěpnička, M., Holčapek, M., & Škorupová, N. (2019, June). Orderings of extensional fuzzy numbers. In 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (pp. 1-6). IEEE.
[5]. Tranquillo, J. V. (2019). An introduction to complex systems. Lewisburg: Springer International Publishing.
[6]. Mamdani, E.H. and S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies, 1975. 7(1): p. 1-13.
[7]. Takagi, T. and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE transactions on systems, man, and cybernetics, 1985(1): p. 116-132.
[8]. Ying, H., Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequent. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 1998. 28(4): p. 515-520.
[9]. Ying, H., Sufficient conditions on general fuzzy systems as function approximators. Automatica, 1994. 30(3): p. 521-525.
[10]. Tanaka, K. and H.O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach. 2004: John Wiley & Sons.
[11]. Shouraki, S.B., A novel fuzzy approach to modeling and control and its hardware implementation based on brain functionality and specifications. 2000.
[12]. Sugeno, M. and T. Yasukawa, A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on fuzzy systems, 1993. 1(1): p. 7.
[13]. Camastra, F., et al., A fuzzy decision system for genetically modified plant environmental risk assessment using Mamdani inference. Expert Systems with Applications, 2015. 42(3): p. 1710-1716.
[14]. Khan, D.A. and S. Abbas, Intelligent Transportation System for Smart-Cities using Fuzzy Logic. Lahore Garrison Univ. Res. J. Comput. Sci. Inf. Technol, 2018. 2: p. 64-79.
[15]. Rustum, R., et al., Sustainability ranking of desalination plants using mamdani fuzzy logic inference systems. Sustainability, 2020. 12(2): p. 631.
[16]. Martinez-Gil, J. and J.M. Chaves-Gonzalez, Interpretable ontology meta-matching in the biomedical domain using Mamdani fuzzy inference. Expert Systems with Applications, 2022. 188: p. 116025.
[17]. Georg, S., H. Schulte, and H. Aschemann. Control-oriented modelling of wind turbines using a Takagi-Sugeno model structure. in 2012 IEEE International Conference on Fuzzy Systems. 2012. IEEE.
[18]. Salgado, C.M., et al., Takagi–Sugeno fuzzy modeling using mixed fuzzy clustering. IEEE Transactions on Fuzzy Systems, 2016. 25(6): p. 1417-1429.
[19].Elias, L.J., et al., Stability analysis of Takagi–Sugeno systems using a switched fuzzy Lyapunov function. Information Sciences, 2021. 543: p. 43-57.
[20]. Chaubey, S. and V. Puig, Autonomous Vehicle State Estimation and Mapping Using Takagi–Sugeno Modeling Approach. Sensors, 2022. 22(9): p. 3399.
[21]. Javadian, M., A. Hejazi, and S.H. Klidbary, Obtaining Fuzzy Membership Function of Clusters With the Memristor Hardware Implementation and On-Chip Learning. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022. 6(4): p. 1008-1025.
[22]. Javadian, M., et al., Refining membership degrees obtained from fuzzy C-means by re-fuzzification. Iranian Journal of Fuzzy Systems, 2020. 17(4): p. 85-104.
[23]. Jokar, E., et al., Hardware-algorithm co-design of a compressed fuzzy active learning method. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020. 67(12): p. 4932-4945.
[24]. Klidbary, S.H., S.B. Shouraki, and B. Linares-Barranco, Digital hardware realization of a novel adaptive ink drop spread operator and its application in modeling and classification and on-chip training. International Journal of Machine Learning and Cybernetics, 2019. 10: p. 2541-2561.
[25]. Klidbary, S.H., et al. Outlier robust fuzzy active learning method (ALM). in 2017 7th international conference on computer and knowledge engineering (ICCKE). 2017. IEEE.
[26]. Merrikh-Bayat, F., S.B. Shouraki, and A. Rohani, Memristor crossbar-based hardware implementation of the IDS method. IEEE Transactions on Fuzzy Systems, 2011. 19(6): p. 1083-1096.
[27]. Tikk, D., et al., Improvements and critique on Sugeno's and Yasukawa's qualitative modeling. IEEE Transactions on Fuzzy Systems, 2002. 10(5): p. 596-606.
[28]. Hadad, A.H., T.D. Gedeon, and B.S.U. Mendis. Finding input sub-spaces for polymorphic fuzzy signatures. in 2009 IEEE International Conference on Fuzzy Systems. 2009. IEEE.
[29]. Tikk, D., et al. Implementation details of problems in Sugeno and Yasukawa's qualitative modeling. in Research Working Paper RWP-IT-02-2001, School of Information Technology. 2001.
[30]. Wong, K.W., et al. Improvement of the cluster searching algorithm in Sugeno and Yasukawa’s qualitative modeling approach. in Computational Intelligence. Theory and Applications: International Conference, 7th Fuzzy Days Dortmund, Germany, October 1–3, 2001 Proceedings 7. 2001. Springer.
[31]. Hadad, A.H., et al., A modification of Sugeno-Yasukawa modeler to improve structure identification phase. ACSE J, 2006. 6(3): p. 33-40.
[32]. Hadad, A.H., et al. A modified version of Sugeno-Yasukawa modeler. in Advances in Computer Science and Engineering: 13th International CSI Computer Conference, CSICC 2008 Kish Island, Iran, March 9-11, 2008 Revised Selected Papers. 2009. Springer.
[33]. Hadad, A.H., B.S.U. Mendis, and T.D. Gedeon. Improvements in Sugeno-Yasukawa modelling algorithm. in International Conference on Fuzzy Systems. 2010. IEEE.
[34]. سجاد حق زاد کلیدبری "ارائه اپراتور جدید جایگزین پخش قطره جوهر در روش یادگیری فعال" مجله مهندسی برق دانشگاه تبریز. 49.3 1055-1066(2019).
[35]. کدخدا, اکبرزاده توتونچی, صباحی. (2021). طبقهبند همباشی ادراکی مبتنی بر منطق فازی توسعه یافته. مجله مهندسی برق دانشگاه تبریز, 50(4), 1773-1784.
[36]. Wang, Y., Z. Pan, and J. Dong, A new two-layer nearest neighbor selection method for kNN classifier. Knowledge-Based Systems, 2023. 235: p. 107604.