طراحی فیلتر کالمن توسعه یافته مقاوم هایبرید با عملکرد بالا جهت کاربرد در حضور ناهمترازی های بزرگ

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشگاه صنعتی سهند

2 عضو هیات علمی/ دانشگاه صنعتی سهند

3 عضو هیات علمی دانشگاه صنعتی سهند، گروه کنترل دانشکده مهندسی برق

4 دانشگاه علم و صنعت ایران

چکیده

درتعدادی از کاربردهای عملی مخصوصا در کاربردهای نظامی، سیستم ناوبری اینرسی (INS) بایستی دقت زیادی در زمان کوتاهی داشته باشد. جهت تحقق همترازی، فیلتر های تخمینگر بازگشتی و در موارد غیرخطی از فیلتر کالمن تعمیم یافته (EKF) استفاده می شود. دینامیک سیستم های واقعی عموما پیوسته و اندازه گیریهای سنسورها گسسته انجام می شود.بنابراین، استفاده از یک فیلتر هایبرید اجتناب ناپذیر است. علاوه براین، یک فیلتر مقاوم قابلیت اطمینان سیستم را بطرز قابل ملاحظه ای افزایش می دهد. در این مقاله، ابتدا یک فیلتر کالمن تعمیم یافته هیبریدی(HEKF) ارایه می شود و در ادامه نوع ارتقایافته آن تحت عنوان فیلتر کالمن تعمیم یافته مقاوم هیبریدی (HREKF) نیز ارایه می شود. با اجرای الگوریتمهای ارایه شده روی داده های واقعی، نشان داده می شود که سرعت همگرایی مخصوصا در راستای یاو افزایش قابل ملاحظه ای پیدا می کند. سرانجام، با استفاده از یک رویکرد سیستم ضربه ای، یک اثبات پایداری جدید برای الگوریتمهای ارایه شده ارایه می شود که کراندار بودن خطای تخمین را تضمین می کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

High Performance Hybrid Robust Extended Kalman Filter Design with Application to Large Misalignments

نویسندگان [English]

  • Fatemeh Rahemi 1
  • Mohammad Javad Khosrowjerdi 2
  • Ahmad Akbari 3
  • Saeed Ebadollahi 4
1 Sahand University of Technology, Faculty of Electrical Engineering, Tabriz, IRAN
2 Faculty of Electrical Engineering, Sahand University of Technology, Sahand, Tabriz, Iran.
3 Sahand University of Technology, Faculty of Electrical Engineering, Tabriz, IRAN
4 Electrical Engineering, Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In many applications, especially military applications, the inertial navigation system (INS) needs to achieve a high level of accuracy in a short time. For alignment, recursive estimator filters and, in non-linear cases, the Extended Kalman Filter (EKF) is often used. The dynamics of a real, continuous system and the output of the sensors are available discretely. Therefore, a hybrid filter has been used. In addition, a robust filter is used to increase the reliability of system operation. In this paper, a Hybrid Extended Kalman Filter (HEKF) is presented and then upgraded to the Hybrid Robust Extended Kalman Filter (HREKF). By running the algorithm on the data of a real system, it was observed that the speed of convergence increased especially in the yaw direction. By running the algorithm on the data of a real system, it was observed that the speed of convergence has increased especially in the yaw direction. Finally, using the impulsive system approach, a new stability analysis of the proposed algorithms is presented, which guarantees the boundedness of the error estimation, which is unique.

کلیدواژه‌ها [English]

  • Dual Estimation
  • Hybrid Extended Kalman Filter
  • Hybrid Robust Extended Kalman Filter
  • Large Misalignments
[1] S. Ashraf, P. Aggarwal, P. Damacharla, "A low-cost solution for unmanned aerial vehicle navigation in a global positioning system–denied environment", International Journal of Distributed Sensor Networks, vol. 14, no. 6, 2018.
[2] V.H.A. Ribeiro, R. Santana, G. Reynoso-Meza, "Random vector functional link forests and extreme learning forests applied to UAV automatic target recognition", Engineering Applications of Artificial Intelligence, vol. 117, article no. 105538, 2023.
[3]  M. Gunia, Y. Wu, N. Joram, F. Ellinger, "Building up an inertial navigation system using standard mobile devices", Journal of Electrical Engineering, vol. 5, pp. 299-320, 2017.
[4] M.T. Sabet, H.M. Daniali, A. Fathi, "A low-cost dead reckoning navigation system for an AUV using a robust AHRS: Design and experimental analysis", IEEE Journal of Oceanic Engineering, vol. 43, no. 4, pp. 927-939, 2017.
[5] P.K. Yoon, S. Zihajehzadeh, B.S. Kang, "Robust biomechanical model-based 3-D indoor localization and tracking method using UWB and IMU", IEEE Sensors Journal, vol. 17, no. 4, pp. 1084-96, 2014.
[6] W. Li, J. Wang, "Effective adaptive Kalman filter for MEMS-IMU/magnetometers integrated attitude and heading reference systems", The Journal of Navigation, vol. 66, no. 1, pp. 99-113, 2013.
[7] Y. Liu, X. Xu, X. Liu, "A self-alignment algorithm for SINS based on gravitational apparent motion and sensor data denoising", Sensors, vol. 15, no. 5, pp. 9827-53, 2015.
[8] D. Titterton, J.L. Weston, J. Weston, "Strapdown inertial navigation technology", IET, 2004.
[9] R. Munguía, A. Grau, "A practical method for implementing an attitude and heading reference system", International Journal of Advanced Robotic Systems, vol. 11, no. 4, pp. 62, 2014.
[10]  L. Chang, F. Zha, F. Qin, "Indirect Kalman filtering based attitude estimation for low-cost attitude and heading reference systems", IEEE/ASME Transactions on Mechatronics, vol. 22, no. 4, pp. 1850-1858, 2017.
[11]  J.K. Lee, M.J. Choi, "A sequential orientation Kalman filter for AHRS limiting effects of magnetic disturbance to heading estimation", Journal of Electrical Engineering Technology, vol. 12, pp. 1675-1682, 2017.
[12]  F. Yin, L. Wang, W. Tian, X. Zhang, "Kinematic calibration of a 5-DOF hybrid machining robot using an extended Kalman filter method", Precision Engineering, vol. 79, pp. 86-93, 2023.
[13] م، مجیدی، ع، عرفانیان، ح، خالوزاده، "مقاوم‌سازی موقعیت‌یابی در برابر فریب GPS با استفاده از سامانه‌های INS و Loran-C. مجله مهندسی برق دانشگاه تبریز، دوره 48،شماره پیاپی 85، صفحه 1365-1377
[14]  X. Kai, L. Liangdong, L. Yiwu, "Robust extended Kalman filtering for nonlinear systems with multiplicative noises", Optimal Control Applications and Methods, vol. 32, no. 1, pp. 47-63, 2011.
[15]  X. Kai, C. Wei, L. Liu, "Robust extended Kalman filtering for nonlinear systems with stochastic uncertainties", IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 40, no. 2, pp. 399-405, 2009.
[16]  B. Candan, H.E. Soken, "Robust attitude estimation using IMU-only measurements", IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-9, 2021.
[17]  D.A. Aligia, B.A. Roccia, C.H. De Angelo, G.A. Magallan, G.N. Gonzalez, "An orientation estimation strategy for low cost IMU using a nonlinear Luenberger observer", Measurement, vol. 173, article no. 108664, 2021.
[18]  T. Du, L. Guo, J. Yang, "A fast initial alignment for SINS based on disturbance observer and Kalman filter", Transactions of the Institute of Measurement and Control, vol. 38, no. 10, pp. 1261-1269, 2016.
[19]  J. Sun, X.S. Xu, Y.T. Liu, "Initial alignment of large azimuth misalignment angles in SINS based on adaptive UPF", Sensors, vol. 15, no. 9, pp. 21807-21823, 2015.
[20]  S.P. Dmitriyev, O.A. Stepanov, S.V. Shepel, "Nonlinear filtering methods application in INS alignment", IEEE Transactions on Aerospace and Electronic Systems, vol. 33, no. 1, pp. 260-272, 1997.
 [21] ع،.علما، م، شاصادقی،ا، رمضانی، "طراحی کنترل‌کننده پیش‌بین مدل پایدارساز برای سیستم‌های هایبرید مرکب منطقی دینامیکی: رویکرد تابع لیاپانف مبتنی بر نُرم بی‌نهایت"، مجله مهندسی برق، دانشگاه تبریز، دوره50،شماره 4،صفحه 1734-1744.
[22]  K. Masuya, T. Sugihara, "A nonlinear complementary filter for attitude estimation with dynamics compensation of MARG sensor", in Proceedings of the 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 976-981, 2016.
[23]  Y.C. Fan, Y.H. Tseng, C.Y. Wen, "A Novel Deep Neural Network Method for HAR-Based Team Training Using Body-Worn Inertial Sensors", Sensors, vol. 22, no. 21, article no. 8507, 2022.
[24]  D. Simon, "Optimal state estimation: Kalman, H infinity, and nonlinear approaches", John Wiley & Sons.
[25] W. Ren, J. Xiong, "Stability analysis of impulsive stochastic nonlinear systems", IEEE Transactions on Automatic Control, vol. 62, no. 9, pp. 4791-4797, 2017.
[26] Liguang Xu, Shuzhi Sam Ge & Hongxiao Hu, "Boundedness and stability analysis for impulsive stochastic differential equations driven by G-Brownian motion", International, Journal of Control, 92:3, 642-652, 2019.
[27] L.C.G. Rogers, D. Williams, "Diffusions, Markov processes and martingales", Volume 2, Itô calculus, Cambridge University Press, 2000.
[28] M. Kok, J.D. Hol, T.B. Schön, "Calibration of a magnetometer in combination with inertial sensors", in Proceedings of the 2012 15th International Conference on Information Fusion, pp. 787-793, 2012.
[29] X. Mao, "Stochastic Differential Equations and Applications", 2nd ed., Elsevier, Chichester, U.K, Horwood, 2007.
[30] L. Hu, X. Li, X. Mao, "Convergence rate and stability of the truncated Euler-Maruyama method for stochastic differential equations", Journal of Computational and Applied Mathematics, vol. 337, pp. 274-289, 2018.