بهبود مشخصه‌های خطینگی تقویت کننده‌های توان‌ GaN بر مبنای تزریق سیگنال هارمونیک دوم

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشیار، دانشکده مهندسی برق، دانشگاه علم و صنعت ایران، تهران، ایران

3 پژوهشگر، پژوهشکده سامانه‌های ماهواره‌ای، پژوهشگاه فضایی ایران، تهران، ایران

چکیده

در این مقاله طرح جدیدی برای بهبود مشخصه­های خطینگی تقویت ­کننده توان­های GaN ارائه شده است. مبنای این طرح تزریق سیگنال هارموینک دوم ساخته شده به ورودی تقویت­کننده توان مورد نظر از طریق یک مسیر پیشخورد است. با استفاده از نتایج تئوری و شبیه سازی­های دو-تن، اثر تزریق هارمونیک دوم بر مشخصه­های خطینگی تقویت کننده­های توان بررسی شده است. یک مدار خطی ساز فعال سه پورتی با قابلیت تولید سیگنال هارمونیک دوم با دامنه و فاز قابل تنظیم برای پیاده سازی روش مذکور پیشنهاد شده و برای بهبود خطینگی دو تقویت­ کننده توان ده وات طراحی شده با مشخصه­های غیرخطی مختلف مورد ارزیابی قرار گرفته است. همچنین، به عنوان اعتبار­سنجی، مدار پیشنهادی ساخته شده و برای خطی سازی یک تقویت کننده توان GaN، مورد استفاده قرار گرفته است. نتایج شبیه سازی و اندازه گیری نشان داد که با تزریق سیگنال هارمونیک دوم تولیدی و تنظیم مناسب دامنه و فاز این سیگنال می­توان علاوه بر بهبود مشخصه­های خطینگی شامل اینترمدولاسیون مرتبه سوم (IMD3)، نسبت توان کانال مجاور (ACPR) و مشخصه AM-PM، نقطه اشباع dB-1 را نیز افزایش داد.

کلیدواژه‌ها


عنوان مقاله [English]

Linearity Enhancement of GaN Power Amplifiers Based on Second Harmonic Injection Technique

نویسندگان [English]

  • F. Abbasnezhad 1
  • M. Tayarani 2
  • A. Abrishamifar 2
  • E. Johari Salmasi 3
1 School of Electrical Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
2 School of Electrical Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
3 Satellite Research Institute, Tehran, Iran
چکیده [English]

In this paper, a new approach for improving the linearity characteristics of GaN power amplifiers is presented. The method is based on the injection of the second harmonic signal to the input of the power amplifier through a forward path. The effect of the second harmonic injection on the linearity characteristics of the power amplifier is studied using two-tone theory and simulations. An active three-port linearizing circuit with the ability to generate a second harmonic signal with adjustable amplitude and phase has been proposed to implement this method. Further, the paper method has been evaluated for improving the linearity of two 10-watt power amplifiers with different nonlinear characteristics. As a concept, the proposed circuit is also fabricated and used for linearizing the GaN power amplifier. It has been shown that by injecting the second harmonic signal and properly adjusting its amplitude and phase, in addition to improving the linearity characteristics, including third-order intermodulation (IMD3), adjacent channel power ratio (ACPR), and AM-PM characteristic, the 1-dB compression point is also increased.

کلیدواژه‌ها [English]

  • “Power amplifier”
  • “Linearization”
  • “GaN”
  • “Third order intermodulation”
  • “Adjacent channel power ratio”
[1] R. S. Pengelly et al., "A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs," IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1764-1783, Jun 2012.
[2] U. K. Mishra, L. Shen, T. E. Kazior, and Y.-F. Wu., "GaN-Based RF Power Devices and Amplifiers," IEEE Trans. Microwave Theory &Tech., vol. 96, no. 2, pp. 287-305, Feb. 2008.
[3] R. S. Pengelly et al., "A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs," IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1764-1783, Jun 2012.
[4] G. Longobardi, "GaN for power devices: Benefits applications and normally-off technologies," Semiconductor Conference (CAS) 2017 International, pp. 11-18, 2017.
[5] J. C. Pedro, L. C. Nunes, and P. M. Cabral, ‘‘Soft compression and the origins of nonlinear behavior of GaN HEMTs,’’ in Proc. 44th Eur. Microw. Conf., Rome, Italy, Oct. 2014, pp. 353–356.
[6] Pedro M. Tomé, Filipe M. Barradas, Telmo R. Cunha, José Carlos Pedro, “Hybrid Analog/Digital Linearization of GaN HEMT-Based Power Amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 1, pp. 288 - 294, Dec. 2018.
[7] Y. Hu, S. Boumaiza, “Power-scalable wideband linearization of power amplifiers, ” IEEE Trans. Microw. Theory Techn., vol. 64, no. 5, pp. 1456-1464, May 2016.
[8] A. Dani, M. Roberg, and Z. Popovic, “PA efficiency and linearity enhancement using external harmonic injection,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 4097–4106, Dec. 2012.
[9] Mohammad Darwish, Anh-Vu Pham, " Development of a Parallel-FET Linearization Technique for High Efficiency GaN Power Amplifiers," IEEE Microw. Wireless Compon. Lett., vol. 27, no. 2, pp. 183-185, Feb. 2017.
[10] Q. Cai, W. Che, K. Ma, M. Zhang, "A simplified transistor-based analog predistorter for a GaN power amplifier", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 65, no. 3, pp. 326-330, Mar. 2018.
[11] Y. Liu, W. Pan, S. Shao, Y. Tang, “A new digital predistortion for wideband power amplifiers with constrained feedback bandwidth," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 12, pp. 683-685, Dec. 2013.
[12] S. Jin, B. Park, K. Moon, M. Kwon, and B. Kim, “Linearization of CMOS cascode power amplifiers through adaptive bias control,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4534 – 4543, Dec. 2013.
[13] F. Abbasnezhad, M. Tayarani, A. Abrishamifar and V. Nayyeri, "A Simple and Adjustable Technique for Effective Linearization of Power Amplifiers Using Harmonic Injection," in IEEE Access, vol. 9, pp. 37287-37296, 2021.
[14] C. S. Aitchison, M. Mbabele, M. R. Moazzam, D. Budimir and F. Ali, "Improvement of third-order intermodulation product of RF and microwave amplifiers by injection," in IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 6, pp. 1148-1154, June 2001.
[15] S. Kusunoki, K. Kawakami and T. Hatsugai, "Load-impedance and bias-network dependence of power amplifier with second harmonic injection," in IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 9, pp. 2169-2176, Sept. 2004.
[16] فرهاد عباس نژاد، مجید طیرانی، وحید نیری، احسان جوهری سلماسی، «طرح جدید مولد سیگنال هارمونیک دو با کاربرد در خطی سازی تقویت کننده­های توان»، فصل نامه علمی دریافنون، دوره 8، شماره 3، صفحات 1-10، 1400.
[17] S. C. Cripps, RF Power Amplifiers for Wireless Communications (Microway Library). Norwood, MA, USA: Artech House, 2006.
[18] Kistchinsky A. Ultra-Wideband GaN Power Amplifiers-From Innovative Technology to Standart Products, Rijeka, Croatia: InTech, Open Access Publisher; 2011.
[19] PathWave Advanced Design System (ADS), Keysight.
[20] Available online at: https://www.wolfspeed.com/cgh40010
[21] ناصر ناصری، زهرا قطان کاشانی، «تقسیم‌کننده‌ی توان فراپهن‌باند کوچک با کم‌ترین خطای دامنه و بیشترین جداسازی»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 4، صفحات 1865-1872، 1399.
[22] زهرا زین‌الدینی، ذاکرحسین فیروزه، رضا بهادری‌نژاد، «نحوه طراحی و ساخت یک تقویت‌کننده متوازن کم‌نویز مبتنی بر ترانزیستور HJFET در باند فرکانسی GHz 9-11»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1، صفحات 93-105، 1396.
[23] W. Hallberg, M. Ozen, D. Gustafsson, K. Buisman, and C. Fager, “A Doherty power ¨ amplifier design method for improved efficiency and linearity,” IEEE Trans. Microw. Theory Techn., vol. 64, pp. 4491-4504, Dec 2016.  
[24] Y. Hu and S. Boumaiza, ‘‘Power-scalable wideband linearization of power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 5, pp. 1456–1464, May 2016.
[25] P. Hao, S. He, F. You, W. Shi, J. Peng, and C. Li, ‘‘Independently tunable linearizer based on characteristic self-compensation of amplitude and phase,” IEEE Access, vol. 7, pp. 13188–131200, 2019.
[26] Mohammad Darwish, Anh-Vu Pham, “Developement of a Parallel-FET Linearization Technique for High Efficiency GaN Power Amplifiers,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 2, pp. 183-185, Feb. 2017.
[27] S. Rahimizadeh, T. Cappello, and Z. Popovic, ‘‘An efficient linear power amplifier with 2nd harmonic injection,” in Proc. IEEE Topical Conf. RF/Microw. Power Modeling Radio Wireless Appl. (PAWR), Jan. 2019, pp. 1–4.