The Role of Various Scattering Mechanisms in Hg_(1-x) Cd_x Te (x=0.22, 0.3)

نوع مقاله : علمی-پژوهشی

نویسندگان

Department of Physics, Payame Noor University (PNU), Tehran, Iran

چکیده

An iteration computation was carried out to investigate electron transport properties in Hg1-xCdxTe. We employed the modified iterative procedure which allows us to increase the computational accuracy in several structures. We considered deformation potential, polar optical phonon, piezoelectric, and ionized impurity scattering. Electron drift mobility is calculated for different temperature and doping dependencies. It was found that the electron drift mobility decreases with the temperature increases from 100K to 300K. Competitions among several temperature-dependent scattering mechanisms create temperature-dependent of MCT mobility. Furthermore, it was concluded that the x-dependence of the Hg1-xCdxTe mobility results primarily from the x-dependence of bandgap, and secondarily the x-dependence of effective masses. In the case of low temperatures, the electron mobility quickly decreases with the increase of doping concentration, while this happens at a slower speed in the case of high temperatures.

کلیدواژه‌ها


عنوان مقاله [English]

The Role of Various Scattering Mechanisms in Hg_(1-x) Cd_x Te (x=0.22, 0.3)

نویسندگان [English]

  • S. NAJAFI BAVANI
  • M. S. Akhoundi Khezrabad
Department of Physics, Payame Noor University (PNU), Tehran, Iran
چکیده [English]

An iteration computation was carried out to investigate electron transport properties in Hg1-xCdxTe. We employed the modified iterative procedure which allows us to increase the computational accuracy in several structures. We considered deformation potential, polar optical phonon, piezoelectric, and ionized impurity scattering. Electron drift mobility is calculated for different temperature and doping dependencies. It was found that the electron drift mobility decreases with the temperature increases from 100K to 300K. Competitions among several temperature-dependent scattering mechanisms create temperature-dependent of MCT mobility. Furthermore, it was concluded that the x-dependence of the Hg1-xCdxTe mobility results primarily from the x-dependence of bandgap, and secondarily the x-dependence of effective masses. In the case of low temperatures, the electron mobility quickly decreases with the increase of doping concentration, while this happens at a slower speed in the case of high temperatures.

کلیدواژه‌ها [English]

  • Iteration method
  • electron drift mobility
  • scattering
  • Hg1-xCdxTe
[1] A. Rogalski, “Toward third generation HgCdTe infrared detectors,” Journal of alloys and compounds, vol. 371, no. 1-2, pp. 53-57, 2004.
[2] A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” Journal of applied physics, vol. 105, no. 9, pp. 4, 2009.
[3] J. W. Stouwdam, and F. C. van Veggel, “Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles,” Nano letters, vol. 2, no. 7, pp. 733-737, 2002.
[4] J. Schmitt, and H.-C. Flemming, “FTIR-spectroscopy in microbial and material analysis,” International Biodeterioration & Biodegradation, vol. 41, no. 1, pp. 1-11, 1998.
[5] J. Madejová, “FTIR techniques in clay mineral studies,” Vibrational spectroscopy, vol. 31, no. 1, pp. 1-10, 2003.
[6] A. González, Z. Fang, Y. Socarras, J. Serrat, D. Vázquez, J. Xu, and A. M. López, “Pedestrian detection at day/night time with visible and FIR cameras: A comparison,” Sensors, vol. 16, no. 6, pp. 820, 2016.
[7] S. Briz, A. De Castro, J. Aranda, J. Meléndez, and F. López, “Reduction of false alarm rate in automatic forest fire infrared surveillance systems,” Remote Sensing of Environment, vol. 86, no. 1, pp. 19-29, 2003.
[8] R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature photonics, vol. 4, no. 8, pp. 495-497, 2010.
[9] L. Miller, G. Smith, and G. Carr, “Synchrotron-based biological microspectroscopy: from the mid-infrared through the far-infrared regimes,” Journal of Biological Physics, vol. 29, no. 2, pp. 219-230, 2003.
[10] T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances, vol. 2, no. 4, pp. e1501856, 2016.
[11] N. Nelms, and J. Dowson, “Goldblack coating for thermal infrared detectors,” Sensors and Actuators A: Physical, vol. 120, no. 2, pp. 403-407, 2005.
[12] O. Salvetti, L. A. Ronchi, C. Corsi, A. Rogalski, and M. Strojnik, “Advanced infrared technology and applications,” Advances in Optical Technologies, vol. 2013, pp. 1-2, 2013.
[13] A. Rogalski, M. Kopytko, and P. Martyniuk, “Performance prediction of pin HgCdTe long-wavelength infrared HOT photodiodes,” Applied optics, vol. 57, no. 18, pp. D11-D19, 2018.
[14] I. Izhnin, K. Mynbaev, A. Voitsekhovskii, S. Nesmelov, S. Dzyadukh, A. Korotaev, V. Varavin, S. Dvoretsky, D. Marin, and M. Yakushev, “Electrical and microscopic characterization of p+-type layers formed in HgCdTe by arsenic implantation,” Semiconductor Science and Technology, vol. 35, no. 11, pp. 115019, 2020.
[15] I. I. Izhnin, K. D. Mynbaev, A. V. Voytsekhovskiy, S. N. Nesmelov, S. M. Dzyadukh, O. I. Fitsych, V. S. Varavin, S. A. Dvoretsky, N. N. Mikhailov, and A. Korotaev, “Hall-effect studies of modification of HgCdTe surface properties with ion implantation and thermal annealing,” 2020.
[16] L. Kadanoff, and G. Baym, “Quantum Statistical Mechanics, Benjamin, New York (1962),” 1989.
[17] L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Sov. Phys. JETP, vol. 20, no. 4, pp. 1018-1026, 1965.
[18] R. Kubo, “The fluctuation-dissipation theorem,” Reports on progress in physics, vol. 29, no. 1, pp. 255, 1966.
[19] R. Landauer, “Can a length of perfect conductor have a resistance?,” Physics Letters A, vol. 85, no. 2, pp. 91-93, 1981.
[20] M. Büttiker, “Four-terminal phase-coherent conductance,” Physical review letters, vol. 57, no. 14, pp. 1761, 1986.
[21] R. Landauer, “Conductance determined by transmission: probes and quantised constriction resistance,” Journal of Physics: Condensed Matter, vol. 1, no. 43, pp. 8099, 1989.
[22] P. Martyniuk, M. Kopytko, and A. Rogalski, “Barrier infrared detectors,” Opto-electronics review, vol. 22, no. 2, pp. 127-146, 2014.
[23] M. Karimi, M. Kalafi, and A. Asgari, “Numerical optimization of an extracted HgCdTe IR-photodiodes for 10.6-μm spectral region operating at room temperature,” Microelectronics journal, vol. 38, no. 2, pp. 216-221, 2007.
[24] E. Melezhik, J. Gumenjuk-Sichevska, and F. Sizov, “Electron mobility in semi-metal HgCdTe quantum wells: dependence on the well width,” SpringerPlus, vol. 5, no. 1, pp. 1-10, 2016.
[25] انوری فرد.م, “انسداد میدان الکتریکی جانبی از نواحی درین و سورس جهت بهبود اثرات کانال کوتاه در افزاره,“ Nano-SOI. مجله مهندسی برق دانشگاه تبریز, vol. 48, no. 3, pp. 991-998, 1397.
 [26] صیفوری. م, امیری. پ, داردس. ا, “تقویت‌کننده الکترونیکی مقاومت انتقالی برای شبکه‌های مخابرات نوری با ساختار جدید مبتنی بر پسخور فعال ولتاژ جریان. ,“ مجله مهندسی برق دانشگاه تبریز, vol. 48, no.2, pp.737-744, 1397.
[27] M. Kopytko, A. Kębłowski, P. Madejczyk, P. Martyniuk, J. Piotrowski, W. Gawron, K. Grodecki, K. Jóźwikowski, and J. Rutkowski, “Optimization of a HOT LWIR HgCdTe photodiode for fast response and high detectivity in zero-bias operation mode,” Journal of Electronic Materials, vol. 46, no. 10, pp. 6045-6055, 2017.
[28] B. BARUTCU, “DEVELOPMENT OF HIGH PERFORMANCE LONG WAVELENGTH INFRARED HGCDTE FOCAL PLANE ARRAYS,” MIDDLE EAST TECHNICAL UNIVERSITY, 2019.
[29] D. Rode, "Low-field electron transport," Semiconductors and semimetals, pp. 1-89: Elsevier, 1975.
[30] H. Ehrenreich, “Band structure and transport properties of some 3–5 compounds,” Journal of Applied Physics, vol. 32, no. 10, pp. 2155-2166, 1961.
[31] S. Smirnov, H. Kosina, M. Nedjalkov, and S. Selberherr, "A zero field Monte Carlo algorithm accounting for the pauli exclusion principle." pp. 185-193,2003.
[32] S. Derelle, S. Bernhardt, R. Hardar, J. Primot, J. Deschamps, and J. Rothman, “A Monte Carlo Study of $hbox {Hg} _ {0.7}hbox {Cd} _ {0.3}hbox {Te} $ e-APD,” IEEE transactions on electron devices, vol. 56, no. 4, pp. 569-577, 2009.
[33] H. Arabshahi, “Simulations of electron transport in GaN devices,” Durham University, 2002.
[34] H. Arabshahi, and A. Mowlavi, “Low-field electron transport properties in zincblende and wurtzite GaN structures using an iteration model for solving Boltzmann equation,” Modern Physics Letters B, vol. 23, no. 10, pp. 1359-1366, 2009.
[35] H. Arabshahi, “Calculation of Electron Hall Mobility in GaSb, GaAs and GaN Using an Iterative Method,” The African Review of Physics, vol. 2, no. 1, 2009.
[36] S. Poncé, W. Li, S. Reichardt, and F. Giustino, “First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials,” Reports on Progress in Physics, vol. 83, no. 3, pp. 036501, 2020.
[37] C. Jacoboni, Theory of electron transport in semiconductors: a pathway from elementary physics to nonequilibrium Green functions: Springer Science & Business Media, 2010.
[38] B. K. Ridley, Electrons and phonons in semiconductor multilayers: Cambridge University Press, 2009.
[39] M. L. Cohen, and J. R. Chelikowsky, Electronic structure and optical properties of semiconductors: Springer Science & Business Media, 2012.
[40] H. Brooks, "Scattering by ionized impurities in semiconductors." pp. 879-879,1951.
[41] K. F. Brennan, and N. S. Mansour, “Monte Carlo calculation of electron impact ionization in bulk InAs and HgCdTe,” Journal of applied physics, vol. 69, no. 11, pp. 7844-7847, 1991.
[42] J. Meyer, and F. Bartoli, “Low-temperature electron transport in GaAs,” Solid State Communications, vol. 41, no. 1, pp. 19-22, 1982.
[43] H. Koçer, “Numerical modeling and optimization of HgCdTe infrared photodetectors for thermal imaging,” 2011.
[44] R. Yadava, A. Gupta, and A. Warrier, “Hole scattering mechanisms in Hg 1− x Cd x Te,” Journal of electronic materials, vol. 23, no. 12, pp. 1359-1378, 1994.
[45] J. Dubowski, T. Dietl, W. Szymańska, and R. Gałazka, “Electron scattering in CdxHg1− xTe,” Journal of Physics and Chemistry of Solids, vol. 42, no. 5, pp. 351-362, 1981.
[46] S. D. Yoo, and K. D. Kwack, “Theoretical calculation of electron mobility in HgCdTe,” Journal of applied physics, vol. 81, no. 2, pp. 719-725, 1997.
[47] R. Miles, “A6. 4 Electron and hole mobilities in HgCdTe,” Properties of Narrow Gap Cadmium-based compounds, no. 10, pp. 221, 1994.
[48] W. Higgins, G. Pultz, R. Roy, R. Lancaster, and J. Schmit, “Standard relationships in the properties of Hg1− x Cd x Te,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 7, no. 2, pp. 271-275, 1989.
[49] F. Bartoli, J. Meyer, C. Hoffman, and R. Allen, “Electron mobility in low-temperature Hg 1− x Cd x Te under high-intensity C O 2 laser excitation,” Physical Review B, vol. 27, no. 4, pp. 2248, 1983.
[50] G. Nimtz, G. Bauer, R. Dornhaus, and K. Müller, “Transient carrier decay and transport properties in Hg 1− x Cd x Te,” Physical Review B, vol. 10, no. 8, pp. 3302, 1974.
[51] W. Scott, “Electron Mobility in Hg1− x Cd x Te,” Journal of Applied Physics, vol. 43, no. 3, pp. 1055-1062, 1972.
[52] J. Mroczkowski, J. Shanley, M. Reine, P. LoVecchio, and D. Polla, “Erratum: Lifetime measurement in Hg0. 7Cd0. 3Te by population modulation,” Applied Physics Letters, vol. 38, no. 12, pp. 1033-1033, 1981.
[53] T. Wu, K. Lam, C. Chiang, J. Gong, and S.-J. Yang, “Activation of boron implanted in Hg0. 7Cd0. 3Te by high‐temperature annealing,” Journal of applied physics, vol. 63, no. 10, pp. 4983-4988, 1988.
[54] S. N. Bavani, and M. A. Khezrabad, “The electron mobility in Hg1-xCdxTe (x= 0.22 and 0.3): A comparison between experimental and theoretical results,” Materials Research Bulletin, vol. 140, pp. 111325, 2021.