ارائه یک استراتژی زمان‌بندی وظایف به‌منظور بهبود خصوصیات کیفی در محیط محاسبات ابری

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشگاه آزاد اسلامی واحد دولت آباد - گروه کامپیوتر

چکیده

در طول سال‌های اخیر، یکی از جنبه‌های مهم محاسبات ابری زمان‌بندی پویای تعداد زیادی درخواست‌های وظیفه است که با نرخ متغیر به‌وسیله کاربران ارسال می‌شوند. زمان‌بندی وظیفه یک نقش کلیدی در سیستم‌های محاسباتی ابر بازی می‌کند و این نوع زمان‌بندی بر اساس یک معیار تنها نمی‌تواند انجام شود بلکه تعداد زیادی قوانین و شرایط به‌صورت یک توافق بین کاربران و فراهم‌کنندگان ابر باید در نظر گرفته شوند. درواقع این توافق، کیفیت سرویسی است که کاربران از فراهم‌کنندگان انتظار دارند. مراکز داده ابر نه‌تنها باید این وظیفه‌های عظیم را اجرا کنند بلکه باید نیازمندی‌های چندگانه کاربران مختلف را ارضاء کنند. در این مقاله، یک استراتژی زمان‌بندی وظایف چندهدفه با استفاده از مرتب‌سازی نامغلوب، محاسبه نرخ نرمال و آستانه ارائه می‌شود. هدف از روش پیشنهاد شده در نظرگیری تعدادی از مهم‌ترین معیارهای کیفیت سرویس در زمان اجرای وظیفه‌ها یعنی مهلت زمانی و هزینه می‌باشد. به‌علاوه، خصوصیت کشسانی ابر در نظر گرفته می‌شود. نتایج شبیه‌سازی بهبود را در شرایطی روی زمان تکمیل کلی، هزینه، میانگین بهره‌وری ماشین مجازی و نقض مهلت زمانی در مقایسه با الگوریتم‌های MultiObjective، FCFS، Min-Min، Priority Scheduling و MOF نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

A Task Scheduling Strategy to Improve Qualitative Features in the Cloud Computing Environment

نویسندگان [English]

  • M. Yazdanbakhsh
  • R. Khorsand
Department of Computer Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran
چکیده [English]

: Over the recent years, one of the important aspects of cloud computing is the dynamic scheduling of a large number of task requests which are submitted with variable rate by users. Task scheduling plays a key role in cloud computing systems, and this type of scheduling can not be done on a single criterion, but many rules and conditions must be considered as an agreement between users and cloud providers. In fact, this agreement is the quality of the services that users expect from providers. Cloud data centers should not only execute these huge tasks, but also should meet the multiple needs of different users. In this paper, a multi-objective task scheduling strategy is proposed using non-dominated sorting, calculate normal and threshold rates. The aim of the proposed approach is considering some of the most important criteria for quality of service at the time of tasks execution, that means deadline and cost. In addition, the cloud elasticity property is considered. The simulation results show improvement in the conditions of makespan, cost, mean utilization of virtual machines and deadlines violation compared to MultiObjective, FCFS, Min-Min, Priority Schedulig and MOF approaches.

کلیدواژه‌ها [English]

  • Cloud computing
  • Multi-objective scheduling
  • Elasticity
  • Quality of service
[1]          H. Jiao, J. Zhang, J. Li, J. Shi, and J. Li, “Immune optimization of task scheduling on multidimensional QoS constraints,” Cluster Comput., vol. 18, no. 2, pp. 909–918, 2015.
[2]          S. K. Panda, I. Gupta, and P. K. Jana, “Task scheduling algorithms for multi-cloud systems: allocation-aware approach,” Inf. Syst. Front., pp. 1–19, 2017.
[3]          L. Ma, Y. Lu, F. Zhang, and S. Sun, “Dynamic Task Scheduling in Cloud Computing Based on Greedy Strategy,” Proc. Int. Conf. Trust. Comput. Serv., pp. 156–162, 2012.
[4]          L. Tang, J.-S. Pan, Y. Hu, P. Ren, and Y. T. and H. Zhao, “A Novel Load Balance Algorithm for Cloud Computing,” © Springer Int. Publ. Switz. 2016, vol. 329, pp. 325–333, 2016.
[5]          K. Dubey, M. Kumar, and S. C. Sharma, “Modified HEFT Algorithm for Task Scheduling in Cloud Environment,” Procedia Comput. Sci., vol. 125, pp. 725–732, 2018.
[6]          R. Moreno-Vozmediano, R. S. Montero, E. Huedo, and I. M. Llorente, “Orchestrating the Deployment of High Availability Services on Multi-zone and Multi-cloud Scenarios,” J. Grid Comput., pp. 1–15, 2017.
[7]          M. Ghetas and C. H. Yong, “Resource Management Framework for Multi-tier Service Using Case-Based Reasoning and Optimization Algorithm,” Arab. J. Sci. Eng., 2017.
[8]          L. Chen, M. Qiu, J. Song, Z. Xiong, and H. Hassan, “E2FS: an elastic storage system for cloud computing,” J. Supercomput., pp. 1–16, 2016.
[9]          R. Khorsand, F. Safi-Esfahani, N. Nematbakhsh, and M. Mohsenzade, “Taxonomy of Workflow Partitioning Problems and Methods in Distributed Environments,” J. Syst. Softw., 2017.
[10]        K. R. R. Babu and P. Samuel, “Enhanced Bee Colony Algorithm for Efficient Load Balancing and Scheduling in Cloud,” © Springer Int. Publ. Switz. 2016, vol. 237, pp. 67–78, 2016.
[11]        H. Gamal El Din Hassan Ali, I. A. Saroit, and A. M. Kotb, “Grouped tasks scheduling algorithm based on QoS in cloud computing network,” Egypt. Informatics J., vol. 18, no. 1, pp. 11–19, 2017.
[12]        A. V. Lakra and D. Kumar Yadav, “Multi-objective tasks scheduling algorithm for cloud computing throughput optimization,” Procedia Comput. Sci., vol. 48, no. C, pp. 107–113, 2015.
[13]        M. S. Aslanpour, M. Ghobaei-Arani, and A. N. Toosi, “Auto-scaling Web Applications in Clouds: A Cost-Aware Approach,” J. Netw. Comput. Appl., p. , 2017.
[14]        L. D. Dhinesh Babu and P. Venkata Krishna, “Honey bee behavior inspired load balancing of tasks in cloud computing environments,” Appl. Soft Comput. J., vol. 13, no. 5, pp. 2292–2303, 2013.
[15]        U. Bhoi and P. Ramanuj, “Enhanced Max-min Task Scheduling Algorithm in Cloud Computing,” Int. J. Appl. or Innov. …, vol. 2, no. 4, pp. 259–264, 2013.
[16]        M. Beltr´an, “BECloud: A new approach to analyse elasticity enablers of cloud services,” Futur. Gener. Comput. Syst., vol. 64, pp. 39–49, 2016.
[17]        S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud computing services,” Futur. Gener. Comput. Syst., vol. 29, no. 4, pp. 1012–1023, 2013.
[18]        M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An autonomic approach for resource provisioning of cloud services,” Cluster Comput., vol. 19, no. 3, pp. 1017–1036, 2016.
[19]        M. Ghobaei-Arani, S. Jabbehdari, and M. A. Pourmina, “An autonomic resource provisioning approach for service-based cloud applications: A hybrid approach,” Futur. Gener. Comput. Syst., 2016.
[20]        B. Xu, C. Zhao, E. Hu, and B. Hu, “Job scheduling algorithm based on Berger model in cloud environment,” Adv. Eng. Softw., vol. 42, no. 7, pp. 419–425, 2011.
[21]        H. Li, S. Ge, and L. Zhang, “A QoS-based scheduling algorithm for instance-intensive workflows in cloud environment,” 26th Chinese Control Decis. Conf. CCDC 2014, pp. 4094–4099, 2014.
[22]        J. Zhao, W. Zeng, M. Liu, and G. Li, “Multi-objective Optimization Model of Virtual Resources Scheduling Under Cloud Computing and It’s Solution,” Cloud Serv. Comput., pp. 185–190, 2011.
[23]        F. Ramezani, J. Lu, J. Taheri, and F. K. Hussain, “Evolutionary algorithm-based multi-objective task scheduling optimization model in cloud environments,” World Wide Web, vol. 18, no. 6, pp. 1737–1757, 2015.
[24]        S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid, “Recent advancements in resource allocation techniques for cloud computing environment: a systematic review,” Cluster Comput., vol. 20, no. 3, pp. 2489–2533, 2017.
[25]        N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Computing : What It Is , and What It Is Not,” Present. as part 10th Int. Conf. Auton. Comput., pp. 23–27, 2013.
[26]        F. Cottet, J. Delacroix, Z. Mammeri, and C. Kaiser, Scheduling in real-time systems. 2002.
[27]        L. Wu, S. Kumar Garg, S. Versteeg, and R. Buyya, “SLA-based Resource Provisioning for Hosted Software as a Service Applications in Cloud Computing Environments,” IEEE Trans. Serv. Comput., vol. 7, no. 3, pp. 465–485, 2014.
[28]        C. Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov,  esar A. F. De Rose, and  and R. Buyya, “CloudSim: a toolkit formodeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms,” Softw. - Pract. Exp., vol. 41, no. 1, pp. 23–50, 2011.
[29]        R. Khorsand, F. Safi-Esfahani, N. Nematbakhsh, and M. Mohsenzade, “ATSDS: adaptive two-stage deadline-constrained workflow scheduling considering run-time circumstances in cloud computing environments,” J. Supercomput., vol. 73, no. 6, pp. 2430–2455, 2016.
[30]        S. Banerjee, M. Adhikari, S. Kar, and U. Biswas, “Development and Analysis of a New Cloudlet Allocation Strategy for QoS Improvement in Cloud,” Arab. J. Sci. Eng., vol. 40, no. 5, pp. 1409–1425, 2015.
[31]        G. Wang and H. C. Yu, “Task Scheduling Algorithm Based on Improved Min-Min Algorithm in Cloud Computing Environment,” Appl. Mech. Mater., vol. 303–306, pp. 2429–2432, 2013.
[32]        M. Dakshayini and H. S. Guruprasad, “An Optimal Model for Priority based Service Scheduling Policy for Cloud Computing Environment,” Int. J. Comput. Appl., vol. 32, no. 9, pp. 975–8887, 2011.
[33]        A. Narwal and S. Dhingra, “Task Scheduling Algorithm Using Multi-Objective Functions for Cloud Computing Environment,” 2nd Int. Conf. Sustain. Comput. Tech. Eng., vol. 27–28, no. Vm, 2017.