استخراج مدل وابسته به فرکانس سیستم زمین در حوزه زمان جهت تحلیل عمل‌کرد صاعقه در خطوط انتقال

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه بیرجند

2 دانشکده مهندسی برق – دانشگاه پلی تکنیک مونترآل

چکیده

این مقاله یک روش جدید برای استخراج مدل مناسب حوزه زمان سیستم‌های زمین چنددرگاهه، که قابلیت پیاده‌سازی در نرم‌افزارهای تحلیل حالت گذرا را داشته‌باشند، ارائه می‌‌دهد. این روش کمک می‌کند تا با کم‌ترین تقریب، بتوان رفتار دقیق و وابسته به فرکانس سیستم زمین را در تحلیل گذرای سیستم‌های قدرت در نظر گرفت. راهکار ارائه‌شده در سه مرحله تقسیم‌بندی می‌شود: اول، به‌کارگیری روش الکترومغناطیسی ممان جهت حل معادلات ماکسول که منجربه استخراج ماتریس امپدانس سیستم زمین در رنج فرکانسی مطلوب می‌گردد. در مرحله بعد یک تقریب منطقی از ماتریس امپدانس سیستم زمین با استفاده از روش برازش برداری (VF) صورت می­گیرد. روش VF به­کاررفته، منجربه برازش مجموعه­ای از قطب‌ها برای همه‌ی المان‌های ماتریس امپدانس گردیده‌است. در مرحله آخر، با توجه به این‌که نرم­افزارهای حالت گذرا برمبنای ماتریس ادمیتانس به تحلیل سیستم‌های قدرت می‌پردازند؛ با تغییر متغیرهای مناسب، مدل مناسب سیستم زمین چنددرگاه در حوزه زمان که قابلیت پیاده‌سازی در نرم‌افزارهای حالت گذرا را داشته‌باشد، به‌صورت معادلات فضای حالت استخراج گردیده‌است. مدل‌سازی پیشنهادی برروی یک خط انتقال مرسوم 132 کیلوولت پیاده شده و عمل‌کرد سیسستم زمین با روش­های قبلی شامل مدل‌سازی برمبنای ماتریس ادمیتانس و حالت مرسوم استفاده از مقاومت خطی ساده مقایسه شده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Time Domain Frequency Dependence Modeling of Grounding System in order to Study the Lightning Performance of Transmission Lines

نویسندگان [English]

  • J. Gholinezhad 1
  • R. Shariatinasab 1
  • K. Sheshyekani 2
1 Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
2 Faculty of Electrical Engineering, École Polytechnique de Montréal, Montréal, Canada
چکیده [English]

This paper presents a new method for proper modeling of time domain multi-ports grounding systems that can be implemented in transient state-of-the-art analysis software. The presented method aims in minimizing the approximation in the frequency modeling of grounding systems in the transient analysis of power systems. The proposed solution is divided into three stages: First, the use of an electromagnetic method for solving the Maxwell equations, which leads to the extraction of the impedance matrix of the grounding system in a desired frequency range. In the next step, a logical approximation of the impedance matrix was made using the Vector Fitting (VF) method. The used VF method has led to the fitting of a set of poles for all impedance matrix arrays. In the final stage, considering that all the transient soft wares analyze power systems based on the admittance matrix, the proper model of the time domain multi-ports grounding system is executed by state space equations. The proposed modeling is performed on a typical 132 kV transmission line, and performance of implemented grounding system is compared with the previous methods including admittance matrix modeling and conventional model based on simple linear resistances.

کلیدواژه‌ها [English]

  • multiport grounding system
  • impedance modeling
  • vector fitting
[1] رضا شریعتی­نسب، بهزاد کرمانی و حمیدرضا نجفی، «مدل‌سازی و تحلیل حالت گذرای ناشی از برخورد مستقیم و غیرمستقیم صاعقه در سیستم‌های فتوولتائیک»، مجله مهندسی برق دانشگاه تبریز، دوره 47، شماره 2، صفحات 594-583، تابستان 1396.
[2] رضا شریعتی­نسب و علی‌اکبر سالاری، «بررسی تزریق لایه ریزدانه‌های اکسیدروی در پوشش عایقی برق‌گیر و طراحی بهینه ابعاد آن با هدف توزیع یکنواخت میدان»، مجله مهندسی برق دانشگاه تبریز، دوره 45، شماره 3، صفحات 54-47، پاییز 1394.
[3] Leuven EMTP Center, Alternative Transients Program (ATP) Rule Book, Can/Am EMTP User Group, Belgium, 1987.
[4] Manitoba HVDC Research Centre, PSCAD/EMTDC User’s Manual: Ver.4.2, Manitoba, Canada, 2005.
[5] J. Mahseredjian, S. Dennetiere, L. Dube, B. Khodabakhchian, and L. Gerin-Lajoie, “On a new approach for the simulation of transients in power systems,” Elect. Power Syst. Res., vol. 77, no. 11, pp. 1514–1514, Sep. 2007.
[6] R. Shariatinasab, J. G. Safar, and M.A. Mobarakeh, “Development of an adaptive neural-fuzzy inference system based meta-model for estimating lightning related failures in polluted environments,” Science, Measurement & Technology, IET, vol. 8, no. 4, pp.187-195, 2014.
[7] M. A. Araújo, and et al, “Practical methodology for modeling and simulation of a lightning protection system using metal-oxide surge arresters for distribution lines,” Electric Power Systems Research, vol. 118, pp. 47-54, 2015.
[8] R. Shariatinasab, B. Vahidi, and S. H. Hosseinian, “Statistical evaluation of lightning-related failures for the optimal location of surge arresters on the power networks,” IET generation, transmission & distribution, vol. 3, no. 2, pp. 129-144, 2009.
[9] K. Sheshyekani, M. Akbari, B. Tabei, and R. Kazemi, “Wideband modeling of large grounding systems to interface with electromagnetic transient solvers,” IEEE Trans. Power Delivery, vol. 29, no. 4, pp.1868-1876, 2014.
[10] K. Sheshyekani, B. Tabei, “Multiport frequency-dependent network equivalent using a modified matrix pencil method,” IEEE Trans. Power Delivery, vol. 29, no. 5, pp.2340-2348, Oct. 2014.
[11] M. R. Alemi, and K. Sheshyekani, “Wide-Band Modeling of Tower-Footing Grounding Systems for the Evaluation of Lightning Performance of Transmission Lines,” IEEE Trans. Electromagn. Compat, vol. 57, no. 6, pp. 1627-1636, July 2015.
[12] R. Shariatinasab, J. Gholinezhad, K. Sheshyekani, and M. R. Alemi, “The effect of wide band modeling of tower-footing grounding system on the lightning performance of transmission lines: A probabilistic evaluation." Electr. Power Syst. Res., vol. 141, pp. 1-10, Dec. 2016.
[13] محمدرضا عالمی, تحلیل رفتار گذرای شبکه های زمین به روش ممان، پایان‌نامه کارشناسی ارشد برق، دانشگاه شهید بهشتی, تهران، 1392.
[14] L. Grcev, and F. Dawalibi, “An electromagnetic model for transients in grounding systems,” IEEE Trans. Power Del., vol. 5, no. 4, pp. 1773-1781, Nov. 1990.
[15] M. Heimbach and L. Grcev, “Grounding system analysis in transients programs applying electromagnetic field approach,” IEEE Trans. Power Del., vol. 12, no. 1, pp. 186–193, Jan. 1997.
[16] B. Gustavsen, A. Semlyen, “Rational approximation of frequency domain responses by vector fitting,” IEEE Trans. Power Delivery., vol. 14, no. 3, pp. 1052-1061, Jul. 1999.
[17] B. Gustavsen, “Fast passivity enforcement for pole-residue models by perturbation of residue matrix eigenvalues,” IEEE Trans. Power Del., vol. 23, no. 4, pp. 2278-2285, Oct. 2008.
[18] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, vol. 15, Studies Appl. Math, Singapore: SIAM, 1994.
[19] B. Gustavsen, and H. M. J. De Silva, “Inclusion of rational models in an electromagnetic transients program: Y-parameters, Z-parameters, S-parameters, transfer functions”, IEEE Trans. Power Del., vol. 28, no. 2, pp. 1164-1174, April 2013.
[20] T. Hara, and O. Yamamoto, “Modelling of a transmission tower for lightning-surge analysis,” IEE P. Gener. Transm. D., vol. 143, no. 3, pp. 283-289, May 1996.
[21] Z. G. Datsios, P. N. Mikropoulos, and T. E. Tsovilis, “Estimation of the minimum shielding failure flashover current for first and subsequent lightning strokes to overhead transmission lines,” Electric Power Systems Research, vol. 113, pp. 141-150, 2014.
[22] C. L. Longmire, and K. S. Smith, “A universal impedance for soils,” Mission Research Corp., Santa Barbara, CA, Rep. DNA3788T, Oct. 1975.
[23] F. Heidler, J. M. Cvetic, and B. V. Stanic, “Calculation of lightning current parameters,” IEEE Trans. Power Del., vol. 14, no. 2, pp. 399–404, Apr. 1999.
[24] J. R. Marti, “Accurate modeling of frequency-dependent transmission lines in electromagnetic transient simulations,” IEEE Trans. Power Appl. Syst., vol. PAS-101, no. 1, pp. 147–157, 1982.
[25] P. Chowdhuri, J. G. Anderson, W. A. Chisholm, T. E. Field, M. Ishii, J. A. Martinez, M. B. Marz, J. McDaniel, T. R. McDermott, A. M. Mousa, T. Narita, D. K. Nichols, and T. A. Short, “Parameters of lightning strokes: a review,” IEEE Trans. Power Del., vol. 20, no. 1, pp. 346-358, Jan. 2005.
[26] V. Rakov, and M. A. Uman, “Lightning: Physics and Effects,” Cambridge, U.K.: Cambridge Univ. Press, 2003.
[27] F. H. Silveira, S. Visacro, A. De Conti, and C. R. de Mesquita, “Backflashovers of transmission lines due to subsequent lightning strokes,” IEEE Trans. Electromagn. Compat., vol. 54, no. 2, pp. 316-322, April 2012.