مدل‌سازی انتشار اطلاعات در شبکه‌های کتابشناسی چندلایه

نویسندگان

دانشکده علوم و فنون نوین - دانشگاه تهران

چکیده

بسیاری از سیستم‌های اطلاعاتی را می‌توان به شکل شبکه‌ای چندلایه مدل کرد که هر لایه متشکل از تعدادی گره است و این گره‌ها با انواع مختلفی یال به یکدیگر مرتبط می‌شوند. اگرچه محققان در سال‌های اخیر به تحلیل انتشار اطلاعات در شبکه توجه نشان داده‌اند، اکثر این مطالعات به شبکه‌های تک‌لایه محدود بوده است. اما در دنیای واقعی به دلیل پیچیدگی روابط بین گره‌ها، عموماً شاهد وجود شبکه‌های چندلایه هستیم. کارهای پیشین، اغلب با ساده‌سازی‌های زیاد فضای مساله همراه هستند، مثلاً در بیشتر کارها تنوع گره‌ها و تأثیر متقابل آن‌ها نادیده گرفته شده است. روش پیشنهادی این مقاله با در نظر گرفتن تأثیر لایه‌های مختلف بر یکدیگر به پیش‌بینی انتشار در شبکه‌های چندلایه، می‌پردازد. مهم‌ترین ویژگی روش، این است که می‌تواند قدرت تأثیر تمامی لایه‌ها را مشخص کند و میزان این تأثیر را بدون توجه به شباهت یا تفاوت گره‌های هر لایه نسبت به هم، اندازه‌گیری نماید. مدل پیشنهادی بر روی دو مجموعه داده‌ی واقعی پیاده سازی و با سناریوهای مختلفی ارزیابی شده است. همچنین روند فعال شدن گره‌های مختلف را به دست آورده و با روند رشد واقعیشان در واقعیت مقایسه کردیم و نشان دادیم که روش پیشنهادی نسبت به روش‌های پیشین که تمامی گره‌ها را از یک نوع فرض می‌کردند، شباهت بیشتری به واقعیت دارد و می‌تواند راه مناسبی برای پیش‌بینی انتشار در شبکه‌های چندلایه باشد. 

کلیدواژه‌ها


عنوان مقاله [English]

Modeling Information Diffusion in Bibliographic Multilayer Networks

نویسندگان [English]

  • S. Babaei
  • S. Molaei
  • M. Salehi
Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
چکیده [English]

‌Nowadays, ‌most ‌of ‌information ‌systems ‌can ‌be ‌modeled ‌as ‌multilayer ‌networks ‌which ‌each ‌layer ‌includes‌ ‌some ‌nodes ‌connected ‌to ‌each ‌other ‌by ‌different ‌types of links. Information ‌diffusion ‌in ‌networks ‌is ‌the ‌subject ‌that ‌researchers ‌considered ‌recently ‌and ‌they ‌analyzed ‌and ‌modeled ‌this ‌process type ‌in ‌the networks. ‌Although most ‌of ‌researches ‌in this field have focused ‌on ‌single ‌layer ‌networks, ‌but ‌in ‌the ‌real ‌world, ‌because ‌of ‌the ‌complexity ‌of ‌relations, most ‌systems ‌must ‌be ‌modeled ‌as‌ ‌multilayer ‌networks. ‌In ‌the ‌previous ‌ ‌works, ‌there are ‌much simplification ‌in ‌problem ‌space, ‌like ‌projection ‌all ‌layer ‌into ‌one ‌layer ‌or ‌negligence ‌the ‌mutual ‌effect ‌of ‌nodes ‌in ‌different ‌layers. ‌So a‌ ‌new ‌effective ‌model ‌for ‌analyzing ‌diffusion ‌in ‌multilayer ‌networks ‌is ‌needed.‌ This ‌method is ‌focused ‌on ‌predict‌ing ‌diffusion ‌in ‌multilayer ‌networks, ‌with ‌considering ‌mutual ‌effect ‌of ‌different ‌layers ‌on ‌each other. ‌T‌he ‌most ‌important ‌specification ‌of ‌this ‌proposed ‌method, ‌is ‌the ‌ability ‌to ‌specify ‌power ‌of ‌all ‌layers ‌and ‌measuring ‌this ‌power ‌ ‌regardless ‌node''''‌s ‌similarity ‌or ‌difference. ‌In ‌fact, ‌this ‌model can determine the diffusion power ‌of ‌each ‌type of nodes. ‌The ‌model‌ is applied on two real bibliographic information networks, and experimentally demonstrated the effectiveness of ‌this ‌model‌ compared with ‌other‌ diffusion models.

کلیدواژه‌ها [English]

  • Multilayer Networks
  • Information Diffusion
  • Multiplex Networks
  • Interconnected Networks
  • Diffusion Processes
[1] C. Kirst, M. Timme, and D. Battaglia, “Dynamic information routing in complex networks,” Nat. Commun., vol. 7, p. 11061, 2016.
[2] Z.-K. Zhang, C. Liu, X.-X. Zhan, X. Lu, C.-X. Zhang, and Y.-C. Zhang, “Dynamics of information diffusion and its applications on complex networks,” Phys. Rep., vol. 651, pp. 1–34, 2016.
[3] S. Dhamal, K. J. Prabuchandran, and Y. Narahari, “Information Diffusion in Social Networks in Two Phases,” IEEE Trans. Netw. Sci. Eng., vol. 3, no. 4, pp. 197–210, Oct. 2016.
[4] D. Margaris, C. Vassilakis, and P. Georgiadis, “Recommendation information diffusion in social networks considering user influence and semantics,” Soc. Netw. Anal. Min., vol. 6, no. 1, pp. 122-136, 2016.
[5] Y. Hu, R. J. Song, and M. Chen, “Modeling for Information Diffusion in Online Social Networks via Hydrodynamics,” IEEE Access, vol. 5, pp. 128–135, 2017.
[6] J. Han, “Mining heterogeneous information networks by exploring the power of links,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5808 LNAI, pp. 13–30, 2009.
[7] Y. Sun, J. Han, P. Zhao, Z. Yin, H. Cheng, and T. Wu, “RankClus: Integrating Clustering with Ranking for Heterogeneous Information Network Analysis,” Proc. 12th Int. Conf. Extending Database Technol. Adv. Database Technol. - EDBT ’09, p. 565, 2009.
[8] Y. Sun and J. Han, “Mining heterogeneous information networks: a structural analysis approach,” ACM SIGKDD Explor. Newsl., vol. 14, no. 2, pp. 20–28, 2013.
[9] H. Gui, Y. Sun, J. Han, and G. Brova, “Modeling Topic Diffusion in Multi-Relational Bibliographic Information Networks,” in Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management - CIKM ’14, pp. 649–658, 2014.
[10] M. S. Granovetter, “Threshold Models of Collective Behavior,” Am. J. Sociol., vol. 83, no. 6, pp. 1420–1443, 1978.
[11] N. Pathak, A. Banerjee, and J. Srivastava, “A Generalized Linear Threshold Model for Multiple Cascades,” in 2010 IEEE International Conference on Data Mining, pp. 965–970, 2010.
[12] D. J. Watts, “A Simple Model of Global Cascades on Random Networks,” Proc. Natl. Acad. Sci. U. S. A., vol. 99, no. 9, pp. 5766–5771, 2002.
[13] Y. Sun and J. Han, “Mining Heterogeneous Information Networks: Principles and Methodologies,” Synth. Lect. Data Min. Knowl. Discov., vol. 3, no. 2, pp. 1–159, 2012.
[14] C. D. Brummitt, K. M. Lee, and K. I. Goh, “Multiplexity-facilitated cascades in networks,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 85, no. 4, 2012.
[15] C. Budak, D. Agrawal, and A. El Abbadi, “Limiting the spread of misinformation in social networks,” in Proceedings of the 20th international conference on World wide web - WWW ’11, p. 665, 2011.
[16] Y. Zhuang, A. Arenas, and O. Yaǧan, “Clustering determines the dynamics of complex contagions in multiplex networks,” Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 95, no. 1, 2017.
[17] M. Salehi, R. Sharma, M. Marzolla, M. Magnani, P. Siyari, and D. Montesi, “Spreading Processes in Multilayer Networks,” IEEE Trans. Netw. Sci. Eng., vol. 2, no. 2, pp. 65–83, 2015.
[18] D. Kempe, J. Kleinberg, and É. Tardos, “Influential Nodes in a Diffusion Model for Social Networks”, pp. 1127–1138, 2005.
[19] M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and M. A. Porter, “Multilayer networks,” J. Complex Networks, vol. 2, no. 3, pp. 203–271, 2014.
[20] سهیلا مولائی، سما بابایی، مصطفی صالحی, "جستجوی شباهت در شبکه‌های ناهمگن بر مبنای فرامسیرهای وزن‌دار." بیست و یکمین کنفرانس انجمن کامپیوتر ایران، تهران، اسفند 18-20، 1394.
[21] J. Santisteban, Tejada-Cárcamo, Unilateral Jaccard Similarity Coefficient, GSB@ SIGIR. (2015) 23–27. doi:http://ceur-ws.org/Vol-1393/.
[22] A. Chao, R. L. Chazdon, R. K. Colwell, and T.-J. Shen, “A new statistical approach for assessing similarity of species composition with incidence and abundance data,” Ecol. Lett., vol. 8, no. 2, pp. 148–159, Dec. 2004.
[23] سمیه توکلی، افسانه فاطمی." تشکیل تیم دوهدفه در شبکه‌های اجتماعی." مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، تابستان 1396.
[24] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks,” VLDB 2011, vol. 3, no. 2, pp. 1–12, 2011.
[25] مریم باسره، ولی درهمی، سجاد ظریف زاده. " ارائه روشی برای استخراج خودکار عبارات کلیدی از اخبار وب پارسی." مجله مهندسی برق دانشگاه تبریز، جلد  47، شماره 3، پاییز 1396.
[26] D. M. W. POWERS, “Evaluation: From Precision, Recall and F-Measure To Roc, Informedness, Markedness & Correlation,” J. Mach. Learn. Technol., vol. 2, no. 1, pp. 37–63, 2011.
[27] P. Perruchet and R. Peereman, “The exploitation of distributional information in syllable processing,” J. Neurolinguistics, vol. 17, no. 2–3, pp. 97–119, Mar. 2004.