پیاده‌سازی و مشخصه‌یابی یک ریزشیر کواک با استفاده از مواد گرمانرم برای کاربردهای آزمایشگاه روی تراشه

نویسندگان

1 دانشکده مهندسی برق - دانشگاه صنعتی سهند - تبریز

2 مرکز تحقیقات ارتوپدی - دانشکده پزشکی - دانشگاه علوم پزشکی مشهد

چکیده

در سال‌های اخیر توجه روز افزونی به توسعه‌ی روش‌های جدیدی برای ساخت تراشه‌های ریزسیالاتی با استفاده از مواد جدیدی از خانواده‌ی گرمانرم‌ها، شده است. علت اصلی آن ویژگی‌های بسیار خوب مواد گرمانرم است که می‌تواند معایبی که ماده‌ی پلی دی متیل سیلوکسان (PDMS) دارد را برطرف کند. در این مقاله، یک روش ساخت بهینه‌شده، ارزان و سریعی را برای ساخت تراشه‌های ریزسیالاتی با استفاده از مواد گرمانرم گزارش شده است که برای ساخت آن از روش ریزماشین‌کاری لیزری و پیوند حرارتی استفاده می‌شود. از روش ریزماشین‌کاری لیزری برای حکاکی و بریدن صفحات آکریلیک و فیلم نازک پلی اورتانِ گرمانرم (TPU) استفاده شده است. پس از قراردادن لایه‌ها بر روی یکدیگر با استفاده از پیوند حرارتی لایه‌ها به یکدیگر پیوند یافته و در نهایت یک ریزشیر کواک برای کاربردهای ریزسیالاتی ساخته شده است. آزمایش‌های تکرارپذیری، قابلیت اطمینان و نشتی برای فشارهای مایع و کنترلی مختلف مورد مطالعه قرار گرفته‌اند که مشخص شد شیرهای ساخته‌شده توانایی مسدودکردن کانال را بدون هیچگونه نشتی، دارا می‌باشند. در نهایت، اثر تداخل عملکرد شیرهای یک کانال روی کانال مجاور نیز، به هدف توسعه‌ی کار برای کاربردهای آزمایشگاه روی تراشه مورد مطالعه قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Implementation and Characterization of a Quake Microvalve Using Thermoplastic Materials for Lab on a Chip Applications

نویسندگان [English]

  • A. Pourmand 1
  • S. A. Mousavi Shaegh 2
  • H. Badri 1
  • E. Najafi Aghdam 1
1 Electrical Engineering Department, Sahand University of Technology, Tabriz, Iran
2 Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
چکیده [English]

In recent years, there has been an increasing attention in developing inexpensive and easy microfluidic chips fabrication techniques using new materials from thermoplastic group. This is because of excellent properties of thermoplastics which can overcome the issues associated to poly(dimethylsiloxane). In the current investigation, an inexpensive, easy and rapid fabrication method was introduced and optimized to develop microfluidic chips using thermoplastic materials in which laser micromachining and thermal fusion bonding were used. Laser micromachining was used for cutting and engraving of poly(methyl methacrylate) sheets and thermoplastic polyurethane film. After alignment of layers, thermal fusion bonding was used to bond the layers and a Quack microvalve was successfully implemented for microfluidic applications. Repeatability, reliability and leakage free tests were done for various liquid and control pressures in which, results show that fabricated microvalve can block liquid channel without any leakage. Finally, interference effect of a channel’s valves on the neighboring channel was also studied to extend this work for lab on a chip design and applications.

کلیدواژه‌ها [English]

  • Microfluidics
  • quake microvalve
  • laser micromachining
  • thermoplastic materials
  • lab on a chip
[1] نیما طالب‌زاده, مزدک راد ملکشاهی, هادی ولادی, «ارائه روشی نوین برای ساخت یک ریزمخلوط‌گر الکترواسمتیکی با الکترودهایی در دو سمت برای کاربردهای زیست-فناوری», مجله مهندسی برق دانشگاه تبریز, دوره 46، شماره 1، صفحه 255-265، 1395  
[2] سیاوش زرگری, هادی ولادی, بهناز صادق زاده اسکوئی, پرویز شهابی, جواد فرونچی, مریم پاشائی اصل, «طراحی و ساخت ریزتراشه بلوغ آزمایشگاهی تخمک», مجله مهندسی برق دانشگاه تبریز, دوره 46، شماره 3، صفحه 211-221، 1395
[3] R. Gómez-Sjöberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Analytical chemistry, Vol. 79, No. 22, pp. 8557-8563, 2007.
[4] M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol.288, No. 5463, pp. 113-116, 2000.
[5] G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D. E. Ingber, “Soft lithography in biology and biochemistry,” Annual review of biomedical engineering, Vol. 3, No. 1, pp. 335-373, 2001.
[6] J. N. Lee, C. Park, G. M. Whitesides, “Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices,” Analytical chemistry, Vol. 75, No. 23, pp. 6544-6554, 2003.
[7] K. Ren, W. Dai, J. Zhou, J. Su, H. Wu, “Whole-Teflon microfluidic chips,” Proceedings of the National Academy of Sciences, Vol. 108, No. 20, pp. 8162-8166, 2011.
[8] E. Berthier, E. W. Young, D. Beebe, “Engineers are from PDMS-land, Biologists are from Polystyrenia,” Lab on a Chip, Vol. 12, No. 7, pp. 1224-1237, 2012.
[9] K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab on a Chip, Vol. 9, No. 15, pp. 2132-2139, 2009.
[10] S. A. M. Shaegh, F. De Ferrari, Y. S. Zhang, M. Nabavinia, N. B. Mohammad, J. Ryan, A. Pourmand, E. Laukaitis, R. B. Sadeghian, A. Nadhman, “A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices,” Biomicrofluidics, Vol. 10, No. 4, pp. 044111, 2016.
[11] N. S. Bhise, J. Ribas, V. Manoharan, Y. S. Zhang, A. Polini, S. Massa, M. R. Dokmeci, A. Khademhosseini, “Organ-on-a-chip platforms for studying drug delivery systems,” Journal of Controlled Release, Vol. 190, pp. 82-93, 2014.
[12] K. M. Weerakoon-Ratnayake, C. E. O'Neil, F. I. Uba, S. A. Soper, “Thermoplastic nanofluidic devices for biomedical applications,” Lab on a Chip, Vol. 17, No. 3, pp. 362-381, 2017.
[13] C.-W. Tsao, D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluidics and Nanofluidics, Vol. 6, No. 1, pp. 1-16, 2009.
[14] K. Ren, J. Zhou, H. Wu, “Materials for microfluidic chip fabrication,” Accounts of chemical research, Vol. 46, No. 11, pp. 2396-2406, 2013.
[15] P. S. Nunes, P. D. Ohlsson, O. Ordeig, J. P. Kutter, “Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluidics and nanofluidics, Vol. 9, No. 2-3, pp. 145-161, 2010.
[16] R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, H. H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, Vol. 69, No. 14, pp. 2626-2630, 1997.
[17] J. Giboz, T. Copponnex, P. Mélé, “Microinjection molding of thermoplastic polymers: a review,” Journal of Micromechanics and Microengineering, Vol. 17, No. 6, pp. R96, 2007.
[18] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, W. A. MacCrehan, “Fabrication of plastic microfluid channels by imprinting methods,” Analytical chemistry, Vol. 69, No. 23, pp. 4783-4789, 1997.
[19] H. Becker, C. Gärtner, “Polymer microfabrication technologies for microfluidic systems,” Analytical and bioanalytical chemistry, Vol. 390, No. 1, pp. 89-111, 2008.
[20] Y. Chen, L. Zhang, G. Chen, “Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips,” Electrophoresis, Vol. 29, No. 9, pp. 1801-1814, 2008.
[21] J.-Y. Cheng, C.-W. Wei, K.-H. Hsu, T.-H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sensors and Actuators B: Chemical, Vol. 99, No. 1, pp. 186-196, 2004.
[22] D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab on a Chip, Vol. 15, No. 11, pp. 2364-2378, 2015.
[23] B. S. Kim, K. G. Lee, H. W. Choi, T. J. Lee, K.-J. Park, J. Y. Park, S. J. Lee, “Facile fabrication of plastic template for three-dimensional micromixer-embedded microfluidic device,” BioChip Journal, Vol. 7, No. 2, pp. 104-111, 2013.
[24] J.-H. Lee, E. T. Peterson, G. Dagani, I. Papautsky, “Rapid prototyping of plastic microfluidic devices in cyclic olefin copolymer (COC),” in Proceeding of, International Society for Optics and Photonics, Vol. 5718, pp. 82-91, 2005.
[25] H. Zhang, X. Liu, T. Li, X. Han, “Miscible Organic Solvents Soak Bonding Method Use in a PMMA Multilayer Microfluidic Device,” Micromachines, Vol. 5, No. 4, pp. 1416-1428, 2014.
[26] T.-F. Hong, W.-J. Ju, C.-H. Tsai, Y.-N. Wang, L.-M. Fu, “An integrated microfluidic chip for rapid methanol detection,” International Journal of Automation and Smart Technology, Vol. 2, No. 1, pp. 21-27, 2012.
[27] J. P. Grinias, R. T. Kennedy, “Advances in and prospects of microchip liquid chromatography,” TrAC Trends in Analytical Chemistry, Vol. 81, pp. 110-117, 2016.
[28] T.-F. Hong, W.-J. Ju, M.-C. Wu, C.-H. Tai, C.-H. Tsai, L.-M. Fu, “Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser,” Microfluidics and nanofluidics, Vol. 9, No. 6, pp. 1125-1133, 2010.
[29] H. Li, Y. Fan, R. Kodzius, I. G. Foulds, “Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system,” Microsystem Technologies, Vol. 18, No. 3, pp. 373-379, 2012.
[30] N.T. Nguyen, S. T. Wereley, Fundamentals and applications of microfluidics, Artech House, 2002.
[31] A. K. Au, H. Lai, B. R. Utela, A. Folch, “Microvalves and micropumps for BioMEMS,” Micromachines, Vol. 2, No. 2, pp. 179-220, 2011.
[32] K. W. Oh, C. H. Ahn, “A review of microvalves,” Journal of micromechanics and microengineering, Vol. 16, No. 5, pp. R13, 2006.
[33] W. Zhang, S. Lin, C. Wang, J. Hu, C. Li, Z. Zhuang, Y. Zhou, R. A. Mathies, C. J. Yang, “PMMA/PDMS valves and pumps for disposable microfluidics,” Lab on a Chip, Vol. 9, No. 21, pp. 3088-3094, 2009.
[34] P. Gu, K. Liu, H. Chen, T. Nishida, Z. H. Fan, “Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves,” Analytical chemistry, Vol. 83, No. 1, pp. 446-452, 2010.
[35] K. Liu, P. Gu, K. Hamaker, Z. H. Fan, “Characterization of bonding between poly (dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization,” Journal of colloid and interface science, Vol. 365, No. 1, pp. 289-295, 2012.
[36] O. Cybulski, S. Jakiela, P. Garstecki, “Whole Teflon valves for handling droplets,” Lab on a Chip, Vol. 16, No. 12, pp. 2198-2210, 2016.
[37] V. Sunkara, D.-K. Park, H. Hwang, R. Chantiwas, S. A. Soper, Y.-K. Cho, “Simple room temperature bonding of thermoplastics and poly (dimethylsiloxane),” Lab on a Chip, Vol.11, No. 5, pp. 962-965, 2011.
[38] P. Zhou, L. Young, Z. Chen, “Weak solvent based chip lamination and characterization of on-chip valve and pump,” Biomedical microdevices, Vol. 12, No. 5, pp. 821-832, 2010.
[39] I. Ogilvie, V. Sieben, B. Cortese, M. Mowlem, H. Morgan, “Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA,” Lab on a Chip, Vol. 11, No. 14, pp. 2455-2459, 2011.
[40] S. A. M. Shaegh, Z. Wang, S. H. Ng, R. Wu, H. T. Nguyen, L. C. Z. Chan, A. G. G. Toh, Z. Wang, “Plug-and-play microvalve and micropump for rapid integration with microfluidic chips,” Microfluidics and Nanofluidics, Vol. 19, No. 3, pp. 557-564, 2015.
[41] VLS 2.3 user manual and brochure, Accessed: https://www.ulsinc.com/products/platforms/vls2-30.
[42] H. Klank, J. P. Kutter, O. Geschke, “CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on a Chip, Vol. 2, No. 4, pp. 242-246, 2002.
[43] S. Prakash, S. Kumar, “Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 μm) for microfluidic applications: An experimental investigation,” International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 2, pp. 361-366, 2015.
[44] I. Ogilvie, V. Sieben, C. Floquet, R. Zmijan, M. Mowlem, H. Morgan, “Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC,” Journal of Micromechanics and Microengineering, Vol. 20, No. 6, pp. 065016, 2010.
[45] J. Melin, S. R. Quake, “Microfluidic large-scale integration: the evolution of design rules for biological automation,” Annu. Rev. Biophys. Biomol. Struct., Vol. 36, pp. 213-231, 2007.