[1] نیما طالبزاده, مزدک راد ملکشاهی, هادی ولادی, «ارائه روشی نوین برای ساخت یک ریزمخلوطگر الکترواسمتیکی با الکترودهایی در دو سمت برای کاربردهای زیست-فناوری», مجله مهندسی برق دانشگاه تبریز, دوره 46، شماره 1، صفحه 255-265، 1395
[2] سیاوش زرگری, هادی ولادی, بهناز صادق زاده اسکوئی, پرویز شهابی, جواد فرونچی, مریم پاشائی اصل, «طراحی و ساخت ریزتراشه بلوغ آزمایشگاهی تخمک», مجله مهندسی برق دانشگاه تبریز, دوره 46، شماره 3، صفحه 211-221، 1395
[3] R. Gómez-Sjöberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, S. R. Quake, “Versatile, fully automated, microfluidic cell culture system,” Analytical chemistry, Vol. 79, No. 22, pp. 8557-8563, 2007.
[4] M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol.288, No. 5463, pp. 113-116, 2000.
[5] G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, D. E. Ingber, “Soft lithography in biology and biochemistry,” Annual review of biomedical engineering, Vol. 3, No. 1, pp. 335-373, 2001.
[6] J. N. Lee, C. Park, G. M. Whitesides, “Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices,” Analytical chemistry, Vol. 75, No. 23, pp. 6544-6554, 2003.
[7] K. Ren, W. Dai, J. Zhou, J. Su, H. Wu, “Whole-Teflon microfluidic chips,” Proceedings of the National Academy of Sciences, Vol. 108, No. 20, pp. 8162-8166, 2011.
[8] E. Berthier, E. W. Young, D. Beebe, “Engineers are from PDMS-land, Biologists are from Polystyrenia,” Lab on a Chip, Vol. 12, No. 7, pp. 1224-1237, 2012.
[9] K. J. Regehr, M. Domenech, J. T. Koepsel, K. C. Carver, S. J. Ellison-Zelski, W. L. Murphy, L. A. Schuler, E. T. Alarid, D. J. Beebe, “Biological implications of polydimethylsiloxane-based microfluidic cell culture,” Lab on a Chip, Vol. 9, No. 15, pp. 2132-2139, 2009.
[10] S. A. M. Shaegh, F. De Ferrari, Y. S. Zhang, M. Nabavinia, N. B. Mohammad, J. Ryan, A. Pourmand, E. Laukaitis, R. B. Sadeghian, A. Nadhman, “A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices,” Biomicrofluidics, Vol. 10, No. 4, pp. 044111, 2016.
[11] N. S. Bhise, J. Ribas, V. Manoharan, Y. S. Zhang, A. Polini, S. Massa, M. R. Dokmeci, A. Khademhosseini, “Organ-on-a-chip platforms for studying drug delivery systems,” Journal of Controlled Release, Vol. 190, pp. 82-93, 2014.
[12] K. M. Weerakoon-Ratnayake, C. E. O'Neil, F. I. Uba, S. A. Soper, “Thermoplastic nanofluidic devices for biomedical applications,” Lab on a Chip, Vol. 17, No. 3, pp. 362-381, 2017.
[13] C.-W. Tsao, D. L. DeVoe, “Bonding of thermoplastic polymer microfluidics,” Microfluidics and Nanofluidics, Vol. 6, No. 1, pp. 1-16, 2009.
[14] K. Ren, J. Zhou, H. Wu, “Materials for microfluidic chip fabrication,” Accounts of chemical research, Vol. 46, No. 11, pp. 2396-2406, 2013.
[15] P. S. Nunes, P. D. Ohlsson, O. Ordeig, J. P. Kutter, “Cyclic olefin polymers: emerging materials for lab-on-a-chip applications,” Microfluidics and nanofluidics, Vol. 9, No. 2-3, pp. 145-161, 2010.
[16] R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, H. H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, Vol. 69, No. 14, pp. 2626-2630, 1997.
[17] J. Giboz, T. Copponnex, P. Mélé, “Microinjection molding of thermoplastic polymers: a review,” Journal of Micromechanics and Microengineering, Vol. 17, No. 6, pp. R96, 2007.
[18] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, W. A. MacCrehan, “Fabrication of plastic microfluid channels by imprinting methods,” Analytical chemistry, Vol. 69, No. 23, pp. 4783-4789, 1997.
[19] H. Becker, C. Gärtner, “Polymer microfabrication technologies for microfluidic systems,” Analytical and bioanalytical chemistry, Vol. 390, No. 1, pp. 89-111, 2008.
[20] Y. Chen, L. Zhang, G. Chen, “Fabrication, modification, and application of poly (methyl methacrylate) microfluidic chips,” Electrophoresis, Vol. 29, No. 9, pp. 1801-1814, 2008.
[21] J.-Y. Cheng, C.-W. Wei, K.-H. Hsu, T.-H. Young, “Direct-write laser micromachining and universal surface modification of PMMA for device development,” Sensors and Actuators B: Chemical, Vol. 99, No. 1, pp. 186-196, 2004.
[22] D. J. Guckenberger, T. E. de Groot, A. M. Wan, D. J. Beebe, E. W. Young, “Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices,” Lab on a Chip, Vol. 15, No. 11, pp. 2364-2378, 2015.
[23] B. S. Kim, K. G. Lee, H. W. Choi, T. J. Lee, K.-J. Park, J. Y. Park, S. J. Lee, “Facile fabrication of plastic template for three-dimensional micromixer-embedded microfluidic device,” BioChip Journal, Vol. 7, No. 2, pp. 104-111, 2013.
[24] J.-H. Lee, E. T. Peterson, G. Dagani, I. Papautsky, “Rapid prototyping of plastic microfluidic devices in cyclic olefin copolymer (COC),” in Proceeding of, International Society for Optics and Photonics, Vol. 5718, pp. 82-91, 2005.
[25] H. Zhang, X. Liu, T. Li, X. Han, “Miscible Organic Solvents Soak Bonding Method Use in a PMMA Multilayer Microfluidic Device,” Micromachines, Vol. 5, No. 4, pp. 1416-1428, 2014.
[26] T.-F. Hong, W.-J. Ju, C.-H. Tsai, Y.-N. Wang, L.-M. Fu, “An integrated microfluidic chip for rapid methanol detection,” International Journal of Automation and Smart Technology, Vol. 2, No. 1, pp. 21-27, 2012.
[27] J. P. Grinias, R. T. Kennedy, “Advances in and prospects of microchip liquid chromatography,” TrAC Trends in Analytical Chemistry, Vol. 81, pp. 110-117, 2016.
[28] T.-F. Hong, W.-J. Ju, M.-C. Wu, C.-H. Tai, C.-H. Tsai, L.-M. Fu, “Rapid prototyping of PMMA microfluidic chips utilizing a CO2 laser,” Microfluidics and nanofluidics, Vol. 9, No. 6, pp. 1125-1133, 2010.
[29] H. Li, Y. Fan, R. Kodzius, I. G. Foulds, “Fabrication of polystyrene microfluidic devices using a pulsed CO2 laser system,” Microsystem Technologies, Vol. 18, No. 3, pp. 373-379, 2012.
[30] N.T. Nguyen, S. T. Wereley, Fundamentals and applications of microfluidics, Artech House, 2002.
[31] A. K. Au, H. Lai, B. R. Utela, A. Folch, “Microvalves and micropumps for BioMEMS,” Micromachines, Vol. 2, No. 2, pp. 179-220, 2011.
[32] K. W. Oh, C. H. Ahn, “A review of microvalves,” Journal of micromechanics and microengineering, Vol. 16, No. 5, pp. R13, 2006.
[33] W. Zhang, S. Lin, C. Wang, J. Hu, C. Li, Z. Zhuang, Y. Zhou, R. A. Mathies, C. J. Yang, “PMMA/PDMS valves and pumps for disposable microfluidics,” Lab on a Chip, Vol. 9, No. 21, pp. 3088-3094, 2009.
[34] P. Gu, K. Liu, H. Chen, T. Nishida, Z. H. Fan, “Chemical-assisted bonding of thermoplastics/elastomer for fabricating microfluidic valves,” Analytical chemistry, Vol. 83, No. 1, pp. 446-452, 2010.
[35] K. Liu, P. Gu, K. Hamaker, Z. H. Fan, “Characterization of bonding between poly (dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization,” Journal of colloid and interface science, Vol. 365, No. 1, pp. 289-295, 2012.
[36] O. Cybulski, S. Jakiela, P. Garstecki, “Whole Teflon valves for handling droplets,” Lab on a Chip, Vol. 16, No. 12, pp. 2198-2210, 2016.
[37] V. Sunkara, D.-K. Park, H. Hwang, R. Chantiwas, S. A. Soper, Y.-K. Cho, “Simple room temperature bonding of thermoplastics and poly (dimethylsiloxane),” Lab on a Chip, Vol.11, No. 5, pp. 962-965, 2011.
[38] P. Zhou, L. Young, Z. Chen, “Weak solvent based chip lamination and characterization of on-chip valve and pump,” Biomedical microdevices, Vol. 12, No. 5, pp. 821-832, 2010.
[39] I. Ogilvie, V. Sieben, B. Cortese, M. Mowlem, H. Morgan, “Chemically resistant microfluidic valves from Viton® membranes bonded to COC and PMMA,” Lab on a Chip, Vol. 11, No. 14, pp. 2455-2459, 2011.
[40] S. A. M. Shaegh, Z. Wang, S. H. Ng, R. Wu, H. T. Nguyen, L. C. Z. Chan, A. G. G. Toh, Z. Wang, “Plug-and-play microvalve and micropump for rapid integration with microfluidic chips,” Microfluidics and Nanofluidics, Vol. 19, No. 3, pp. 557-564, 2015.
[41] VLS 2.3 user manual and brochure, Accessed: https://www.ulsinc.com/products/platforms/vls2-30.
[42] H. Klank, J. P. Kutter, O. Geschke, “CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab on a Chip, Vol. 2, No. 4, pp. 242-246, 2002.
[43] S. Prakash, S. Kumar, “Fabrication of microchannels on transparent PMMA using CO2 Laser (10.6 μm) for microfluidic applications: An experimental investigation,” International Journal of Precision Engineering and Manufacturing, Vol. 16, No. 2, pp. 361-366, 2015.
[44] I. Ogilvie, V. Sieben, C. Floquet, R. Zmijan, M. Mowlem, H. Morgan, “Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC,” Journal of Micromechanics and Microengineering, Vol. 20, No. 6, pp. 065016, 2010.
[45] J. Melin, S. R. Quake, “Microfluidic large-scale integration: the evolution of design rules for biological automation,” Annu. Rev. Biophys. Biomol. Struct., Vol. 36, pp. 213-231, 2007.