[1] S. Yang and C. Li, “A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 6, pp. 959-974, 2010.
[2] L. Liu, S. Yang and D. Wang, “Particle Swarm Optimization With Composite Particles in Dynamic Environments,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 40, no. 6, pp. 1634-1648, 2010.
[3] S. Yang, “Explicit memory schemes for evolutionary algorithms in dynamic environments,” Studies in Computational Intelligence, vol. 51, pp. 3-28, 2007.
[4] S. Yang, “Genetic algorithms with elitism-based immigrants for changing optimization problems,” Lecture Notes in Computer Science 4448, pp. 627-636, 2007.
[5] S. Yang and C. Li,“A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments,” IEEE Transactions on Evolutionary Computation, vol. 14, no. 6, pp. 959-974,2010.
[6] J. Branke, T. Kaußler, C. Schmidt and H. Schmeck, “A multi population approach to dynamic optimization problems,”in Adaptive Computing in Design and Manufacturing, pp. 299-308, 2000.
[7] T. Blackwell and J. Branke, “Multi-Swarms, Exclusion, and Anti-Convergence in Dynamic Environments,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, pp. 459-472, 2006.
[8] T. Blackwell, J. Branke and X. Li, “Particle swarms for dynamic optimization problems,” Swarm Intelligence, pp. 193-217, 2008.
[9] J. Branke, Evolutionary Optimization in Dynamic Environment, Kluwer Academic Publishers Norwell, 2002.
[10] J. J. Grefenstette and C. L. Ramsey, "An approach to anytime learning," in International Conference on Machine Learning, pp. 189-195, 1992.
[11] S. Yang and C. Li, “A clustering particle swarm optimizer for dynamic optimization,” in IEEE Congress on Evolutionary Computation, pp. 439-446, 2009.
[12] S. Yang, “Memory-based immigrants for genetic algorithms in dynamic environments,” in Seventh International Genetic and Evolutionary Computation Conference (GECCO), vol. 2, pp. 1115-1122. 2005.
[13] S. Yang and C. Li, “Fast Multi-Swarm Optimization for Dynamic Optimization Problems,” in Fourth International Conference on Natural Computation, pp. 624-628, 2008.
[14] رحمتاله هوشمند، حسین محکمی، امین خدابخشیان، «روشی جدید در جایابی بهینه خازنها و ژنراتورهای توزیعشده در شبکههای توزیع با استفاده از الگوریتم جستجوی اکتریای جهت دادهشده با pso»، مجله مهندسی برق دانشگاه تبریز. جلد 39. شماره 2. 1389.
[15] الهام شکرانیپور، مسعود افتخاریمقدم، «یک الگـوریتم جـدید بهینهسازی گروه ذرات تعاونی با قابلیت بهروزرسانی تطبیقی پارامترها»، مجله مهندسی برق دانشگاه تبریز. جلد 40. شماره 2. زمستان 1389.
[16] R. Morrison and K. DeJong. “A test problem generator for non-stationary environments,” In Congress on Evolutionary Computation, pp. 2047-2053, 1999.
[17] J. Branke, “Memory enhanced evolutionary algorithms for changing optimization problems,” In Congress on Evolutionary Computation, pp. 1875-1882, 1999.
[18] J. Holland, “Adaptation in Natural and Artificial Systems,” University of Michigan Press, Ann Arbor, MI, 1975.
[19] N. Krasnogor and j. Smith “A Tutorial for Competent Memetic Algorithms: Model, Taxonomy, and Design Issues,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 5, pp. 474-488, 2005.
[20] C. Ryan, “Diploidy without dominance,” In Nordic Workshop on Genetic Algorithms, pp. 45-52, 1997.
[21] S. Yang, “Genetic algorithms with elitism-based immigrants for changing optimization problems,” In Applications of Evolutionary Computing, Lecture Notes in Computer Science 4448, pp. 627-636, 2007.
[22] C. Ramsey and J. Grefenstette, “Case-based initialization of genetic algorithms,”in Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 84-91, 1993.
[23] K. Trojanowski and Z. Michalewicz, “Searching for optima in non-stationary environments,” in Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1999), pp. 1843-1850, 1999.
[24] A. Simoes andE. Costa, “Improving memory’s usage in evolutionary algorithms for changing environments,” in IEEE congress on evolutionary computation, pp. 276-283, 2007.
[25] D. Parrott and X. Li, “Locating and Tracking Multiple Dynamic Optima by A Particle Swarm Model Using peciation,” IEEE Transaction on Evolutionary Computation, vol. 10, no. 4, pp. 440-458, 2006.
[26] B. Hashemi and M. R. Meybodi, “Cellular PSO: A PSO for Dynamic Environments”, in Advances in Computation and ntelligence, Lecture Notes in Computer Science, vol. 5821, pp. 422-433, 2009.
[27] R. I. Lung and D. Dumitrescu, “Evolutionary swarm cooperative optimization in dynamic environments,” Natural Computing, vol. 9, no. 1, pp. 83-94, 2010.
[28] R. I. Lung and D. Dumitrescu,“A collaborative model for tracking optima in dynamic environments,” in IEEE Congress on Evolutionary Computation, pp. 564-567, 2007.
[29] G. J. Barlow, Improving memory for optimization and learning in dynamic environments, Ph.D. Thesis, Carnegie Mellon University, pp. 65-82, 2011.