تشخیص بیماری نقص‌توجه/بیش‌فعالی به کمک تحلیل ارتباطات نواحی مختلف مغزی و روش تاب-خوردگی زمانی پویا

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

2 دانشیار، آزمایشگاه علوم اعصاب محاسباتی، دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

3 استاد، دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

چکیده

تشخیص بیماری‌های عصب تحولی مانند اختلال نقص‌توجه-بیش‌فعالی به دلیل تأثیر آن بر کیفیت زندگی انسان، مورد توجه زیادی در مطالعات بالینی قرار گرفته است. این اختلال در اثر عوامل ژنتیکی، ناهنجاری های آناتومیکی و کارکردی مغز ایجاد می‌شود که می‌تواند منجر به نقص در ادراک زمان، اختلال در حافظه‌کاری و بی-توجهی شود. ازآنجایی که بررسی تقارن بین فعالیت‌های نواحی مختلف مغز ممکن است نقش مهمی در تشخیص زودهنگام این اختلال ایفا کند، کمی‌سازی شباهت بین سیگنال‌های مغزی یکی از چالش‌های موجود در زمینه تشخیص اختلال نقص‌توجه-بیش‌فعالی است. هدف از این مطالعه محاسبه تقارن مابین جفت کانال‌های موجود در نواحی قشری بین نیم‌کره‌ای یا درون نیم‌کره‌ای مغز است. بدین منظور، الگوریتم جدیدی مبتنی بر تاب‌خوردگی هیلبرت پویا به صورت ویژگی دو متغیره در مرحله استخراج ویژگی ارائه شده و به‌جهت بررسی توانایی و قدرت تفکیک‌پذیری این ویژگی‌ها در نواحی مختلف مغزی، طبقه‌بند ماشین بردار پشتیبان پیشنهاد گردیده است. توانایی روش پیشنهادی در ایجاد تمایز مابین مناطق مختلف مغزی نیز بررسی شده است. الگوریتم پیشنهادی به کمک مجموعه داده‌های سیگنال الکتروانسفالوگرام، شامل 14 کودک بیمار مبتلا به اختلال نقص توجه-بیش فعالی از نوع ترکیبی و 19 کودک سالم که تکالیف بازتولید زمانی را انجام می‌دادند، ارزیابی شد. این روش در تفکیک افراد بیمار از گروه سالم به میانگین صحت بالای007/0±38/94 درصد دست یافت. نتایج تجربی همچنین عملکرد بهتر روش پیشنهادی را در مقایسه با روش‌های قبلی تشخیص بیماری نقص توجه-بیش فعالی با استفاده از سیگنال‌های EEG نشان دادند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Diagnosis of Attention Deficit/Hyperactivity Disorder using the analysis of different brain regions connectivity and Dynamic Time Warping method

نویسندگان [English]

  • F. Moghaddam 1
  • P. Ghaderyan 2
  • M. Shamsi 3
1 M.Sc. Student, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
2 Associate Professor, Computational Neuroscience Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
3 Professor, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
چکیده [English]

The diagnosis of neurodevelopmental diseases, such as attention deficit/hyperactivity disorder (ADHD), has gained great attention in clinical studies due to its effect on the quality of human life. This disorder is caused by genetic factors, and anatomical and functional brain abnormalities, which can lead to timing deficits, working memory impairments, and inattention. Since the investigation of symmetry between activities of different brain regions may play an important role in the early diagnosis of this disorder, similarity quantification between brain signals is one of the existing challenges in the field of ADHD detection. The goal of this study is to compute symmetry between certain cortical areas from inter-hemispheric or intra-hemispheric channel pairs. For this purpose, a new algorithm based on dynamic time warping as a bivariate feature extraction step and support vector machine (SVM) classifier has been proposed. The proposed method's ability in distinct brain regions has also been explored.
The proposed methods have been evaluated on electroencephalogram (EEG) recordings of 14 ADHD children and 19 age-matched healthy controls performing a time-reproduction task. It has achieved high average accuracy rates of 94.38±0.007 in discriminating between healthy controls and patients with ADHD. The experimental results have also demonstrated the superior performance of the proposed method in comparison with previous ADHD detection methods using EEG signals.

کلیدواژه‌ها [English]

  • ADHD
  • EEG Signals
  • support vector machine
  • Bivariate Features
  • Dynamic time warpping
  • Timing Deficits
[1] L. Castle, R. E. Aubert, R. R. Verbrugge, M. Khalid, and R. S. Epstein, "Trends in medication treatment for ADHD," Journal of attention disorders, vol. 10, no. 4, pp. 335-342, 2007
[2] S. Van De Voorde, H. Roeyers, S. Verté, and J. R. Wiersema, "Working memory, response inhibition, and within-subject variability in children with attention-deficit/hyperactivity disorder or reading disorder," Journal of Clinical and Experimental Neuropsychology, vol. 32, no. 4, pp. 366-379, 2010.
[3] S. Khoshnoud, M. Shamsi, M. A. Nazari, and S. Makeig, "Different cortical source activation patterns in children with attention deficit hyperactivity disorder during a time reproduction task," Journal of Clinical and Experimental Neuropsychology, vol. 40, no. 7, pp. 633-649, 2018.
[4] S. Caldani, F. Isel, M. Septier, E. Acquaviva, R. Delorme, and M. P. Bucci, "Impairment in attention focus during the Posner cognitive task in children with ADHD: an eye tracker study," Frontiers in Pediatrics, vol. 8, 2020.
[5] A. Bellato, I. Arora, C. Hollis, and M. J. Groom, "Is autonomic nervous system function atypical in attention deficit hyperactivity disorder (ADHD)? A systematic review of the evidence," Neuroscience & Biobehavioral Reviews, vol. 108, pp. 182-206, 2020.
[6] H. Kandemir, B. G. KILIÇ, S. Ekinci, and M. Yüce, "An evaluation of the quality of life of children with ADHD and their families," Anatolian Journal of Psychiatry/Anadolu Psikiyatri Dergisi, vol. 15, no. 3, 2014.
[7] R. J. Barry, A. R. Clarke, and S. J. Johnstone, "A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography," Clinical neurophysiology, vol. 114, no. 2, pp. 171-183, 2003.
[8] A. A. Strauss and L. E. Lehtinen, "Psychopathology and education of the brain-injured child," 1947.
[9] C. Mullins, M. A. Bellgrove, M. Gill, and I. H. Robertson, "Variability in time reproduction: difference in ADHD combined and inattentive subtypes," Journal of the American Academy of Child & Adolescent Psychiatry, vol. 44, no. 2, pp. 169-176, 2005.
[10] V. Noreika, C. M. Falter, and K. Rubia, "Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies," Neuropsychologia, vol. 51, no. 2, pp. 235-266, 2013.
[11] J. Wu, H. Xiao, H. Sun, L. Zou, and L.-Q. Zhu, "Role of dopamine receptors in ADHD: a systematic meta-analysis," Molecular neurobiology, vol. 45, no. 3, pp. 605-620, 2012.
[12] V. A. Harpin, "The effect of ADHD on the life of an individual, their family, and community from preschool to adult life," Archives of disease in childhood, vol. 90, no. suppl 1, pp. i2-i7, 2005.
[13] M. Moghaddari, M. Z. Lighvan, and S. Danishvar, "Diagnose ADHD disorder in children using convolutional neural network based on continuous mental task EEG," Computer Methods and Programs in Biomedicine, vol. 197, p. 105738, 2020.
[14] M. N. I. Qureshi, B. Min, H. J. Jo, and B. Lee, "Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study," PloS one, vol. 11, no. 8, p. e0160697, 2016.
[15] Z. Mao et al., "Spatio-temporal deep learning method for adhd fmri classification," Information Sciences, vol. 499, pp. 1-11, 2019.
[16] P. Marshall, J. Hoelzle, and M. Nikolas, "Diagnosing Attention-Deficit/Hyperactivity Disorder (ADHD) in young adults: A qualitative review of the utility of assessment measures and recommendations for improving the diagnostic process," The Clinical Neuropsychologist, vol. 35, no. 1, pp. 165-198, 2021.
[17] R. Ishii and Y. Naito, "EEG connectivity as the possible endophenotype in adult ADHD," ed, 2020.
[18] A. Lenartowicz and S. K. Loo, "Use of EEG to diagnose ADHD," Current psychiatry reports, vol. 16, no. 11, p. 498, 2014.
[19] S. K. Loo and S. Makeig, "Clinical utility of EEG in attention-deficit/hyperactivity disorder: a research update," Neurotherapeutics, vol. 9, no. 3, pp. 569-587, 2012.
[20] A.-S. Rommel et al., "Altered EEG spectral power during rest and cognitive performance: a comparison of preterm-born adolescents to adolescents with ADHD," European child & adolescent psychiatry, vol. 26, no. 12, pp. 1511-1522, 2017.
[21] R. J. Barry, A. R. Clarke, R. McCarthy, and M. Selikowitz, "EEG coherence in attention-deficit/hyperactivity disorder: a comparative study of two DSM-IV types," Clinical Neurophysiology, vol. 113, no. 4, pp. 579-585, 2002.
[22] A. Mazaheri, S. Coffey-Corina, G. R. Mangun, E. M. Bekker, A. S. Berry, and B. A. Corbett, "Functional disconnection of frontal cortex and visual cortex in attention-deficit/hyperactivity disorder," Biological psychiatry, vol. 67, no. 7, pp. 617-623, 2010.
[23] M. Murias, J. M. Swanson, and R. Srinivasan, "Functional connectivity of frontal cortex in healthy and ADHD children reflected in EEG coherence," Cerebral Cortex, vol. 17, no. 8, pp. 1788-1799, 2007.
[24] J. J. González, G. Alba, S. Mañas, A. González, and E. Pereda, "Assessment of ADHD Through Electroencephalographic Measures of Functional Connectivity," ADHD-New Dir. Diagnosis Treat., pp. 35-54, 2017.
[25] G. Alba et al., "The variability of EEG functional connectivity of young ADHD subjects in different resting states," Clinical Neurophysiology, vol. 127, no. 2, pp. 1321-1330, 2016.
[26] A. C. Linke et al., "Dynamic time warping outperforms Pearson correlation in detecting atypical functional connectivity in autism spectrum disorders," Neuroimage, vol. 223, p. 117383, 2020.
[27] X. Long, P. Fonseca, J. Foussier, R. Haakma, and R. M. Aarts, "Sleep and wake classification with actigraphy and respiratory effort using dynamic warping," IEEE journal of biomedical and health informatics, vol. 18, no. 4, pp. 1272-1284, 2013.
[28] S. Khoshnoud, M. A. Nazari, and M. Shamsi, "Source-based Multifractal Detrended Fluctuation Analysis for Discrimination of ADHD Children in a Time Reproduction Paradigm," in BIOSIGNALS, 2020, pp. 38-48.
[29] S. Khoshnoud, M. A. Nazari, and M. Shamsi, "Functional brain dynamic analysis of ADHD and control children using nonlinear dynamical features of EEG signals," Journal of integrative neuroscience, vol. 17, no. 1, pp. 17-30, 2018.
[30] P. Ghaderyan, F. Moghaddam, S. Khoshnoud, and M. Shamsi, "New interdependence feature of EEG signals as a biomarker of timing deficits evaluated in attention-deficit/hyperactivity disorder detection," Measurement, vol. 199, p. 111468, 2022.
[31] J. A. Palmer, K. Kreutz-Delgado, and S. Makeig, "AMICA: An adaptive mixture of independent component analyzers with shared components," Swartz Center for Computatonal Neursoscience, University of California San Diego, Tech. Rep, 2012.
[32] J. A. Palmer, S. Makeig, K. Kreutz-Delgado, and B. D. Rao, "Newton method for the ICA mixture model," in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008: IEEE, pp. 1805-1808.
[33] A. Delorme, J. Palmer, J. Onton, R. Oostenveld, and S. Makeig, "Independent EEG sources are dipolar," PloS one, vol. 7, no. 2, p. e30135, 2012.
[34] A. Mognon, J. Jovicich, L. Bruzzone, and M. Buiatti, "ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features," Psychophysiology, vol. 48, no. 2, pp. 229-240, 2011.
[35] S. Kaur, S. Singh, P. Arun, D. Kaur, and M. Bajaj, "Phase space reconstruction of EEG signals for classification of ADHD and control adults," Clinical EEG and neuroscience, vol. 51, no. 2, pp. 102-113, 2020.
[36] J. J. González, L. D. Méndez, S. Mañas, M. R. Duque, E. Pereda, and L. De Vera, "Performance analysis of univariate and multivariate EEG measurements in the diagnosis of ADHD," Clinical Neurophysiology, vol. 124, no. 6, pp. 1139-1150, 2013.
[37] C. A. Ratanamahatana and E. Keogh, "Everything you know about dynamic time warping is wrong," in Third workshop on mining temporal and sequential data, 2004, vol. 32: Citeseer.
[38] A. Bisht and P. Singh, "Muscle Artifact Detection in EEG Signal Using DTW Based Thresholding," in Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences: PCCDS 2020, 2021: Springer, pp. 483-491.
[39] E. Keogh and C. A. Ratanamahatana, "Exact indexing of dynamic time warping," Knowledge and information systems, vol. 7, no. 3, pp. 358-386, 2005.
[40] T. Giorgino, "Computing and visualizing dynamic time warping alignments in R: the dtw package," Journal of statistical Software, vol. 31, pp. 1-24, 2009.
[41] H. Lerogeron, R. Picot-Clemente, A. Rakotomamonjy, and L. Heutte, "Approximating DTW with a convolutional neural network on EEG data," arXiv preprint arXiv:2301.12873, 2023.
[42] R. J. Meszlényi, P. Hermann, K. Buza, V. Gál, and Z. Vidnyánszky, "Resting state fMRI functional connectivity analysis using dynamic time warping," Frontiers in neuroscience, vol. 11, p. 75, 2017.
[43] P. Ghaderyan and A. Abbasi, "Dynamic Hilbert warping, a new measure of RR-interval signals evaluated in the cognitive load estimation," Medical engineering & physics, vol. 40, pp. 103-109, 2017/02/01/ 2017, doi: https://doi.org/10.1016/j.medengphy.2016.12.008.
[44] D. J. Berndt and J. Clifford, "Using dynamic time warping to find patterns in time series," in KDD workshop, 1994, vol. 10, no. 16: Seattle, WA, USA:, pp. 359-370.
[45] J. C. Bledsoe et al., "Diagnostic classification of ADHD versus control: support vector machine classification using brief neuropsychological assessment," Journal of attention disorders, vol. 24, no. 11, pp. 1547-1556, 2020.
[46] S. M. G. Beyrami and P. Ghaderyan, "A robust, cost-effective and non-invasive computer-aided method for diagnosis three types of neurodegenerative diseases with gait signal analysis," Measurement, vol. 156, p. 107579, 2020.
[47] S. Saini, R. Rani, and N. Kalra, "Prediction of Attention Deficit Hyperactivity Disorder (ADHD) using machine learning Techniques based on classification of EEG signal," in 2022 8th International Conference on Advanced Computing and Communication Systems (ICACCS), 2022, vol. 1: IEEE, pp. 782-786.
[48] M.-Y. Chang et al., "A New Method of Diagnosing Attention-Deficit Hyperactivity Disorder in Male Patients by Quantitative EEG Analysis," Clinical EEG and neuroscience, vol. 50, no. 5, pp. 339-347, 2019.
[49] A. Ekhlasi, A. M. Nasrabadi, and M. Mohammadi, "Classification of the Children with ADHD and Healthy Children Based on the Directed Phase Transfer Entropy of EEG Signals," Frontiers in Biomedical Technologies, vol. 8, no. 2, pp. 115-122, 2021.
[50] R. Y. Karimui, S. Azadi, and P. Keshavarzi, "The ADHD effect on the actions obtained from the EEG signals," Biocybernetics and Biomedical Engineering, vol. 38, no. 2, pp. 425-437, 2018.
[51] A. Ekhlasi, A. M. Nasrabadi, and M. Mohammadi, "Analysis of EEG brain connectivity of children with ADHD using graph theory and directional information transfer," Biomedical Engineering / Biomedizinische Technik, 2022, doi: doi:10.1515/bmt-2022-0100.
[52] M. Tosun, "Effects of spectral features of EEG signals recorded with different channels and recording statuses on ADHD classification with deep learning," Physical and Engineering Sciences in Medicine, pp. 1-10, 2021.
[53] M. R. Mohammadi, A. Khaleghi, A. M. Nasrabadi, S. Rafieivand, M. Begol, and H. Zarafshan, "EEG classification of ADHD and normal children using non-linear features and neural network," Biomedical Engineering Letters, vol. 6, no. 2, pp. 66-73, 2016.
[54] N. Karamzadeh, A. Medvedev, A. Azari, A. Gandjbakhche, and L. Najafizadeh, "Capturing dynamic patterns of task-based functional connectivity with EEG," NeuroImage, vol. 66, pp. 311-317, 2013.
[55] M. Ahmadlou and H. Adeli, "Functional community analysis of brain: A new approach for EEG-based investigation of the brain pathology," Neuroimage, vol. 58, no. 2, pp. 401-408, 2011.