[1] بهشید شایسته، وصال حکمی، سید اکبر مصطفوی، احمد اکبری، «ارائه روشی نوین برای محاسبه اعتماد در کاربردهای اینترنت اشیاء»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 2، صفحات 755-743، 1399
[2] S. O. Ogundoyin and I. A. Kamil, "Optimization techniques and applications in fog computing: An exhaustive survey," Swarm Evol Comput, vol. 66, p. 100937, Oct. 2021, doi: 10.1016/J.SWEVO.2021.100937.
[3] V. K. M. D. O. S. H. Pedram, "Energy and task completion time trade-off for task offloading in fog-enabled IoT networks," Pervasive Mob Comput, vol. 74, 2021.
[4] شهرام جمالی، سمیرا حورعلی، «موازنه گر نامتمرکز بار در محیط ابر با بهره گیری از سیاست تصمیم گیری چندشاخصه»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 3، صفحات 106-96، 1395.
[5] Y. Chen, F. Zhao, Y. Lu, and X. Chen, "Dynamic Task Offloading for Mobile Edge Computing with Hybrid Energy Supply," Tsinghua Sci Technol, vol. 28, no. 3, pp. 421–432, 2023, doi: 10.26599/TST.2021.9010050.
[6] A. M. Alwakeel, "An Overview of Fog Computing and Edge Computing Security and Privacy Issues," Sensors, vol. 21, no. 24, Dec. 2021.
[7] M. H. A. A. W. A. H. A. a. M. A. B. Alouffi, "A Systematic Literature Review on Cloud Computing Security: Threats and Mitigation Strategies," IEEE Access, pp. 1–1, 2021.
[8] A. Kishor and C. Chakarbarty, "Task Offloading in Fog Computing for Using Smart Ant Colony Optimization," Wirel Pers Commun, 2021, doi: 10.1007/s11277-021-08714-7.
[9] T. Gao, Q. Tang, J. Li, Y. Zhang, Y. Li, and J. Zhang, "A Particle Swarm Optimization With Lévy Flight for Service Caching and Task Offloading in Edge-Cloud Computing," IEEE Access, vol. 10, pp. 76636–76647, 2022, doi: 10.1109/ACCESS.2022.3192846.
[10] M. Keshavarznejad, M. H. Rezvani, and S. Adabi, "Delay-aware optimization of energy consumption for task offloading in fog environments using metaheuristic algorithms," Cluster Comput, vol. 24, no. 3, pp. 1825–1853, 2021, doi: 10.1007/s10586-020-03230-y.
[11] I. Sarkar, M. Adhikari, N. Kumar, and S. Kumar, "Dynamic Task Placement for Deadline-Aware IoT Applications in Federated Fog Networks," IEEE Internet Things J, vol. 9, no. 2, pp. 1469–1478, 2022, doi: 10.1109/JIOT.2021.3088227.
[12] Z. Wu, B. Li, Z. Fei, Z. Zheng, B. Li, and Z. Han, "Energy-Efficient Robust Computation Offloading for Fog-IoT Systems," IEEE Trans Veh Technol, vol. 69, no. 4, pp. 4417–4425, 2020, doi: 10.1109/TVT.2020.2975056.
[13] L.-A. Phan, D.-T. Nguyen, M. Lee, D.-H. Park, and T. Kim, "Dynamic fog-to-fog offloading in SDN-based fog computing systems," Future Generation Computer Systems, vol. 117, pp. 486–497, 2021, doi: https://doi.org/10.1016/j.future.2020.12.021.
[14] C. Kai, H. Zhou, Y. Yi, and W. Huang,"Collaborative Cloud-Edge-End Task Offloading in Mobile-Edge Computing Networks With Limited Communication Capability," IEEE Trans Cogn Commun Netw, vol. 7, no. 2, pp. 624–634, 2021, doi: 10.1109/TCCN.2020.3018159.
[15] M. Al-khafajiy, T. Baker, H. Al-Libawy, Z. Maamar, M. Aloqaily, and Y. Jararweh, "Improving fog computing performance via Fog-2-Fog collaboration," Future Generation Computer Systems, vol. 100, pp. 266–280, 2019, doi: https://doi.org/10.1016/j.future.2019.05.015.
[16] Z. L. X. W. and Y. L. D. Wang, "Mobility-Aware Task Offloading and Migration Schemes in Fog Computing Networks," IEEE Access, vol. 7, pp. 43356–43368, 2019.
[17] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, "Mobility-Aware Joint Task Scheduling and Resource Allocation for Cooperative Mobile Edge Computing," IEEE Trans Wirel Commun, vol. 20, no. 1, pp. 360–374, 2021, doi: 10.1109/TWC.2020.3024538.
[18] Y. Jiang and D. H. K. Tsang, "Delay-Aware Task Offloading in Shared Fog Networks," IEEE Internet Things J, vol. 5, no. 6, pp. 4945–4956, 2018, doi: 10.1109/JIOT.2018.2880250.
[19] M. Chen and Y. Hao, "Task Offloading for Mobile Edge Computing in Software Defined Ultra-Dense Network," IEEE Journal on Selected Areas in Communications, vol. 36, no. 3, pp. 587–597, 2018, doi: 10.1109/JSAC.2018.2815360.
[20] I. E. A. C. and A. K. O. Salman, "IoT survey: An SDN and fog computing perspective," Comput. Netw, vol. 143, pp. 221–246, 2018.
[21] S. Misra and S. Bera, "Soft-VAN: Mobility-Aware Task Offloading in Software-Defined Vehicular Network," IEEE Trans Veh Technol, vol. 69, no. 2, pp. 2071–2078, 2020, doi: 10.1109/TVT.2019.2958740.
[22] C. Yang, Y. Liu, X. Chen, W. Zhong, and S. Xie, "Efficient Mobility-Aware Task Offloading for Vehicular Edge Computing Networks," IEEE Access, vol. 7, pp. 26652–26664, 2019, doi: 10.1109/ACCESS.2019.2900530.
[23] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, "Mobile Edge Computing Partial Offloading Techniques for Mobile Urban Scenarios," in 2018 IEEE Global Communications Conference (GLOBECOM), 2018, pp. 1–6. doi: 10.1109/GLOCOM.2018.8647240.
[24] G. Zhang, F. Shen, Z. Liu, Y. Yang, K. Wang, and M.-T. Zhou, "FEMTO: Fair and Energy-Minimized Task Offloading for Fog-Enabled IoT Networks," IEEE Internet Things J, vol. 6, no. 3, pp. 4388–4400, 2019, doi: 10.1109/JIOT.2018.2887229.
[25] Q. C. and J. Z. X. H. X. Yang, "Task Offloading Optimization for UAV-assisted Fog-enabled Internet of Things Networks," IEEE Internet Things J, 2021.
[26] S. Misra and N. Saha, "Detour: Dynamic Task Offloading in Software-Defined Fog for IoT Applications," IEEE Journal on Selected Areas in Communications, vol. 37, no. 5, pp. 1159–1166, 2019, doi: 10.1109/JSAC.2019.2906793.
[27] Sheldon M Ross, Introduction to Probability Models, 11th ed. Boston: USA: Academic Press, 2010.
[28] Liu, J. Zhang, X. Zhang, and W. Wang, "Mobility-Aware Coded Probabilistic Caching Scheme for MEC-Enabled Small Cell Networks," IEEE Access, vol. 5, pp. 17824–17833, 2017, doi: 10.1109/ACCESS.2017.2742555.
[29] A. Asensio et al., "Designing an efficient clustering strategy for combined Fog-to-Cloud scenarios," Future Generation Computer Systems, vol. 109, pp. 392–406, 2020, doi: https://doi.org/10.1016/j.future.2020.03.056.
[30] H. O. Hassan, S. Azizi, and M. Shojafar, "Priority, network and energy-aware placement of IoT-based application services in fog-cloud environments," IET Communications, vol. 14, no. 13, pp. 2117–2129, 2020, doi: https://doi.org/10.1049/iet-com.2020.0007.
[31] I. Lera, C. Guerrero, and C. Juiz, "Availability-Aware Service Placement Policy in Fog Computing Based on Graph Partitions," IEEE Internet Things J, vol. 6, no. 2, pp. 3641–3651, 2019, doi: 10.1109/JIOT.2018.2889511.
[32] A. Younis, B. Qiu, and D. Pompili, "Latency-aware Hybrid Edge Cloud Framework for Mobile Augmented Reality Applications," in 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), 2020, pp. 1–9. doi: 10.1109/SECON48991.2020.9158429.
[33] Z. Ning, P. Dong, X. Kong, and F. Xia, "A Cooperative Partial Computation Offloading Scheme for Mobile Edge Computing Enabled Internet of Things," IEEE Internet Things J, vol. 6, no. 3, pp. 4804–4814, 2019, doi: 10.1109/JIOT.2018.2868616.
[34] H. Ma, P. Huang, Z. Zhou, X. Zhang, and X. Chen, "GreenEdge: Joint Green Energy Scheduling and Dynamic Task Offloading in Multi-Tier Edge Computing Systems," IEEE Trans Veh Technol, vol. 71, no. 4, pp. 4322–4335, 2022, doi: 10.1109/TVT.2022.3147027.
[35] M. K. Hussein and M. H. Mousa, "Efficient Task Offloading for IoT-Based Applications in Fog Computing Using Ant Colony Optimization," IEEE Access, vol. 8, pp. 37191–37201, 2020, doi: 10.1109/ACCESS.2020.2975741.
[36] F. Dahan, "An Effective Multi-Agent Ant Colony Optimization Algorithm for QoS-Aware Cloud Service Composition,” IEEE Access, vol. 9, pp. 17196–17207, 2021, doi: 10.1109/ACCESS.2021.3052907.
[37] A. Mseddi, W. Jaafar, H. Elbiaze, and W. Ajib, "Joint Container Placement and Task Provisioning in Dynamic Fog Computing," IEEE Internet Things J, vol. 6, no. 6, pp. 10028–10040, 2019, doi: 10.1109/JIOT.2019.2935056.