[1] Qian, X. Chen, A. A. Kishk, "Decoupling of microstrip antennas with defected ground structure using the common/differential mode theory," IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 5, pp. 828-832, 2021.
[2] V. Babu, B. Anuradha, "Design of UWB MIMO antenna to reduce the mutual coupling using defected ground structure," Wireless Personal Communications, vol. 118, no. 4, pp. 3469-3484, 2021.
[3] Li, L. Jiang, K. L. Yeung, "Novel and efficient parasitic decoupling network for closely coupled antennas," IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 3574-3585, 2019.
[4] Li, S. Cheung, "A novel calculation-based parasitic decoupling technique for increasing isolation in multiple-element MIMO antenna arrays," IEEE Transactions on Vehicular Technology, vol. 70, no. 1, pp. 446-458, 2020.
[5] Li, A. P. Feresidis, M. Mavridou, P. S. Hall, "Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles," IEEE Transactions on Antennas and Propagation, vol. 63, no. 3, pp. 1168-1171, 2015.
[6] Alibakhshikenari, M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, E. Limiti, "Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas," IEEE Access, vol. 7, pp. 51827-51840, 2019.
[7] Singh, F. L. Lohar, "Metamaterial-Based Miniaturized DGS Antenna for wireless Applications," in IOP Conference Series: Materials Science and Engineering, 2022, vol. 1225, no. 1: IOP Publishing, p. 012035.
[8] Omidvar, P. Rezaei, E. Atashpanjeh "Mutual coupling reduction with Peyton Turtle pattern nearfield surface for MIMO patch antenna," Frequenz, 2023.
[9] Habibi Daronkola, et al., "Mutual coupling reduction using plane spiral orbital angular momentum electromagnetic wave," Journal of Electromagnetic Waves and Applications, vol. 36, no. 3, pp. 346-355, 2022.
[10] Schurig et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol. 314, no. 5801, pp. 977-980, 2006.
[11] Vehmas, P. Alitalo, S. Tretyakov, "Experimental demonstration of antenna blockage reduction with a transmission-line cloak," IET Microwaves, Antennas & Propagation, vol. 6, no. 7, pp. 830-834, 2012.
[12] Alitalo, A. E. Culhaoglu, A. V. Osipov, S. Thurner, E. Kemptner, S. A. Tretyakov, "Experimental characterization of a broadband transmission-line cloak in free space," IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4963-4968, 2012.
[13] Danaeifar, M. Kamyab, A. Jafargholi, "Broadband cloaking with transmission‐line networks and metamaterial," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 22, no. 6, pp. 663-668, 2012.
[14] Rainwater, A. Kerkhoff, K. Melin, J. Soric, G. Moreno, A. Alù, "Experimental verification of three-dimensional plasmonic cloaking in free-space," New Journal of Physics, vol. 14, no. 1, p. 013054, 2012.
[15] Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, A. Alu, "Nonlinear plasmonic cloaks to realize giant all-optical scattering switching," Physical Review Letters, vol. 108, no. 26, p. 263905, 2012.
[16] S. Filonov, A. P. Slobozhanyuk, P. A. Belov, Y. S. Kivshar, "Double‐shell metamaterial coatings for plasmonic cloaking," Physica Status Solidi (RRL)–Rapid Research Letters, vol. 6, no. 1, pp. 46-48, 2012.
[17] Alù, "Mantle cloak: Invisibility induced by a surface," Physical Review B, vol. 80, no. 24, p. 245115, 2009.
[18] Su, Y. Zhao, S. Jia, W. Shi, H. Wang, "An ultra-wideband and polarization-independent metasurface for RCS reduction," Scientific Reports, vol. 6, no. 1, p. 20387, 2016.
[19] Serna, L. J. Molina, J. Rivero, L. Landesa, J. M. Taboada, "Multilayer homogeneous dielectric filler for electromagnetic invisibility," Scientific Reports, vol. 8, no. 1, p. 13923, 2018.
[20] Younesiraad, M. Bemani, S. Nikmehr, "Scattering suppression and cloak for electrically large objects using cylindrical metasurface based on monolayer and multilayer mantle cloak approach," IET Microwaves, Antennas & Propagation, vol. 13, no. 3, pp. 278-285, 2019.
[21] Monti, J. C. Soric, A. Alù, A. Toscano, F. Bilotti, "Anisotropic mantle cloaks for TM and TE scattering reduction," IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1775-1788, 2015.
[22] C. Soric, A. Monti, A. Toscano, F. Bilotti, A. Alù, "Dual-polarized reduction of dipole antenna blockage using mantle cloaks," IEEE Transactions on Antennas and Propagation, vol. 63, no. 11, pp. 4827-4834, 2015.
[23] Monti et al., "Mantle cloaking for co-site radio-frequency antennas," Applied Physics Letters, vol. 108, no. 11, p. 113502, 2016.
[24] Moreno et al., "Wideband elliptical metasurface cloaks in printed antenna technology," IEEE Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3512-3525, 2018.
[25] Monti, J. Soric, A. Alù, A. Toscano, F. Bilotti, "Design of cloaked Yagi-Uda antennas," EPJ Applied Metamaterials, vol. 3, p. 10, 2016.
[26] Vellucci et al., "Non-linear mantle cloaks for self-configurable power-dependent phased arrays," in 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 2020: IEEE, pp. 1-3.
[27] Vellucci et al., "Overcoming mantle cloaking limits in antenna applications through non-linear metasurfaces," in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), 2020: IEEE, pp. 355-357.
[28] Vellucci et al., "On the use of nonlinear metasurfaces for circumventing fundamental limits of mantle cloaking for antennas," IEEE Transactions on Antennas and Propagation, vol. 69, no. 8, pp. 5048-5053, 2021.
[29] Vellucci, A. Monti, M. Barbuto, A. Toscano, F. Bilotti, "Progress and perspective on advanced cloaking metasurfaces: from invisibility to intelligent antennas," EPJ Applied Metamaterials, vol. 8, p. 7, 2021.
[30] Y. Chen, A. Alu, "Mantle cloaking using thin patterned metasurfaces," Physical Review B, vol. 84, no. 20, p. 205110, 2011.
[31] M. Bernety, A. B. Yakovlev, "Decoupling antennas in printed technology using elliptical metasurface cloaks," Journal of Applied Physics, vol. 119, no. 1, p. 014904, 2016.
[32] M. Bernety, A. B. Yakovlev, "Cloaking of single and multiple elliptical cylinders and strips with confocal elliptical nanostructured graphene metasurface," Journal of Physics: Condensed Matter, vol. 27, no. 18, p. 185304, 2015.
[33] Moosaei, M. H. Neshati, "Design investigation of mantle-cloak for a PEC cylindrical object under oblique incidence of TM and TE waves," AEU-International Journal of Electronics and Communications, vol. 137, pp. 153801, 2021.
[34] R. Padooru, A. B. Yakovlev, P.-Y. Chen, A. Alu, "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays," Journal of Applied Physics, vol. 112, no. 3, p. 034907, 2012.
[35] M. Bernety, A. B. Yakovlev, "Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks," IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1554-1563, 2015.
[36] Pawar, H. M. Bernety, H. G. Skinner, S.-Y. Suh, A. Alù, A. B. Yakovlev, "Mantle cloaking for decoupling of interleaved phased antenna arrays in 5G applications," in AIP Conference Proceedings, 2020, vol. 2300, no. 1: AIP Publishing LLC, p. 020095.
[37] Niu, H. Zhang, Q. Chen, T. Zhong, "Isolation enhancement in closely coupled dual-band MIMO patch antennas," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 8, pp. 1686-1690, 2019.
[38] Liu, J. Guo, L. Zhao, G.-L. Huang, Y. Li, Y. Yin, "Ceramic superstrate-based decoupling method for two closely packed antennas with cross-polarization suppression," IEEE Transactions on Antennas and Propagation, vol. 69, no. 3, pp. 1751-1756, 2020.
[39] L. Chung, A. Cui, M. Ma, B. Feng, Y. Li, "Central-Symmetry Decoupling Technique for Circularly-Polarized MIMO System of Tightly Packed Chinese-character Shaped Patch Antennas," The Applied Computational Electromagnetics Society Journal (ACES), pp. 1125-1131, 2021.
[40] -F. Cheng, K. K. M. Cheng, "Decoupling of 2× 2 MIMO antenna by using mixed radiation modes and novel patch element design," IEEE Transactions on Antennas and Propagation, vol. 69, no. 12, pp. 8204-8213, 2021.
[41] Mei, Y. M. Zhang, S. Zhang, "Decoupling of a wideband dual-polarized large-scale antenna array with dielectric stubs," IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 7363-7374, 2021.
[42] Qi, D. Yang, H. Zhai, Y. Zeng, Z. Wang, "Patch Antenna Array Decoupling Based on Polarization Conversion Frequency Selective Surface," in 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 2020: IEEE, pp. 1-3.
[43] -L. Wu, C. Wei, X. Mei, Z.-Y. Zhang, "Array-antenna decoupling surface," IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6728-6738, 2017.
[44] Masoumi, R. Kazemi, A. E. Fathy, "Design and implementation of elliptical mantle cloaks for polarization decoupling of two tightly spaced interleaved co-frequency patch array antennas," Scientific Reports, vol. 13, no. 1, pp. 1-16, 2023.