ارائه یک رویکرد توپولوژیکی هوشمند برای انتخاب جهت حسگرها در شبکه‌های حسگر جهت‌دار

نوع مقاله : علمی-پژوهشی

نویسنده

استادیار، گروه مهندسی کامپیوتر دانشکده فنی و مهندسی، دانشگاه شهرکرد، شهرکرد ایران

چکیده

یک شبکه حسگر جهت‌دار از مجموعه‌ای از گره‌های حسگر جهت‌دار تشکیل شده است که می‌توانند در چندین سمت تغییر جهت دهند تا پوشش ناحیه موردنظر را گسترش دهند. یکی از مسائل مهم در این شبکه‌ها فراهم کردن پوشش کافی برای انجام وظایف حسگری است. این مقاله به مسئله انتخاب جهت مناسب برای حسگرهای جهت‌دار به‌منظور ارائه پوشش کامل ناحیه در شبکه‌های حسگر جهت‌دار می‌پردازد. ما با استفاده از مفهوم مانستگی (homology) در توپولوژی جبری پوشش در شبکه‌های حسگر جهت‌دار را با استفاده از مجتمع‌های سادکی (simplicial complex) مدل می‌کنیم و مسئله انتخاب جهت مناسب برای حسگرهای جهت‌دار را به‌صورت یک برنامه‌ریزی خطی دودویی فرمول‌بندی می‌کنیم. سپس الگوریتمی مبتنی بر اتوماتای یادگیر سلولی نامنظم برای جهت‌دهی حسگرها پیشنهاد می‌کنیم. الگوریتم پیشنهادی بر اساس اندازه حفره‌های موجود در ناحیه تحت پوشش کار می‌کند. الگوریتم پیشنهادی برای یافتن حفره‌ها در شبکه حسگر از رویکردی مبتنی بر مانستگی استفاده می‌کند. نتایج شبیه‌سازی حدود 2% افزایش در میزان پوشش و همچنین کاهش چشمگیر در تعداد شرایط و متغیرهای مسئله بهینه‌سازی پیشنهادی را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Presenting an Intelligent Topological Approach for Sensor Orientation in Directional Sensor Networks

نویسنده [English]

  • M. varposhti
Department of Computer Engineering, Shahrekord University, Shahrekord, Iran.
چکیده [English]

Directional sensor networks (DSNs) consist of directional sensor nodes which can switch to several directions to extend their sensing ability to cover the interested area. One important problem in these networks is providing adequate coverage to fulfill the issued sensing tasks. This paper addresses the problem of selection and orientation of directional sensors for providing full area coverage in directional sensor networks. Using the notion of homology in Algebraic topology, we model the coverage of DSNs by simplicial complexes and formulate the problem of selection and orientation of directional sensors as a binary linear programming. Then, an algorithm based on irregular cellular learning automata for orientation of sensors is proposed to solve the problem in a reasonable time. The proposed algorithm works based on the size of the existing holes in the covered area. The proposed algorithm has adopted a homological approach to find holes in the sensor network. The simulation results show about 2% increase in the amount of coverage and also a significant decrease in the number of conditions and variables of the proposed optimization problem.

کلیدواژه‌ها [English]

  • Area coverage
  • directional sensor networks
  • hole localization
  • cellular learning automata
  • simplicial complex
[1]  ه. اقدسی,م. عباسپور, “الگوریتم توزیع‌شده جهت فراهم آوردن پوشش چندچند جانبه از هدف درشبکه های حسگر بصری,” مجله مهندسی برق دانشگاه تبریز، جلد 42، شماره 2، صفحات 53-63، 1392.
[2]  ح. پروین, م. محمدپور,ر. ا. امیدوار, “ارائه روشی مبتنی بر پوشش سراسری و تخمین اتفاق آرا برای بهبود کارایی در شبکه حسگر بی‌سیم,” مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 877-891، 1396.
[3]  P. Singh,Y.-C. Chen, “Sensing coverage hole identification and coverage hole healing methods for wireless sensor networks,” Wireless Networks, vol. 26, no. 3, pp. 2223-2239, 2020.
[4]  P. Gou, G. Mao, F. Zhang,X. Jia, “Reconstruction of coverage hole model and cooperative repair optimization algorithm in heterogeneous wireless sensor networks,” Computer Communications, vol. 153, pp. 614-625, 2020.
[5]  A. Tripathi, H. P. Gupta, T. Dutta, R. Mishra, K. Shukla,S. Jit, “Coverage and connectivity in WSNs: A survey, research issues and challenges,” IEEE Access, vol. 6, pp. 26971-26992, 2018.
[6]  A. Alibeiki, H. Motameni,H. Mohamadi, “A new genetic-based approach for maximizing network lifetime in directional sensor networks with adjustable sensing ranges,” Pervasive and Mobile Computing, vol. 52, pp. 1-12, 2019.
[7]  J. Wang, C. Niu,R. Shen, “Priority-based target coverage in directional sensor networks using a genetic algorithm,” Computers and Mathematics with Applications, vol. 57, no. 11-12, pp. 1915–1922, 2009.
[8]  N. allah Mottaki, H. Motameni,H. Mohamadi, “A genetic algorithm-based approach for solving the target Q-coverage problem in over and under provisioned directional sensor networks,” Physical Communication, pp. 101719, 2022.
[9]  A. Singh,A. Rossi, “A genetic algorithm based exact approach for lifetime maximization of directional sensor networks,” Ad Hoc Networks, 2012.
[10] H. Mohamadi, A. S. B. H. Ismail,S. Salleh, “A learning automata-based algorithm for solving coverage problem in directional sensor networks,” Computing, vol. 95, pp. 1-24, 2013.
[11] A. Javan Bakht, H. Motameni,H. Mohamadi, “A learning automata-based algorithm to solve imbalanced k-coverage in visual sensor networks,” Journal of Intelligent & Fuzzy Systems, vol. 39, no. 3, pp. 2817-2829, 2020.
[12] D. Zhang,J. Zhang, “Multi-species evolutionary algorithm for wireless visual sensor networks coverage optimization with changeable field of views,” Applied Soft Computing, vol. 96, pp. 106680, 2020.
[13] E. O. Rangel, D. G. Costa,A. Loula, “On redundant coverage maximization in wireless visual sensor networks: Evolutionary algorithms for multi-objective optimization,” Applied Soft Computing, vol. 82, pp. 105578, 2019.
[14] J. Jia, C. Dong, Y. Hong, L. Guo,Y. Yu, “Maximizing full-view target coverage in camera sensor networks,” Ad Hoc Networks, vol. 94, pp. 101973, 2019.
[15] X. Zhu, M. Zhou,A. Abusorrah, “Optimizing node deployment in rechargeable camera sensor networks for full-view coverage,” IEEE Internet of Things Journal, vol. 9, no. 13, pp. 11396-11407, 2021.
[16] N. Tezcan,W. Wang, “Self-orienting wireless multimedia sensor networks for occlusion-free viewpoints,” Comput. Netw., vol. 52, no. 13, pp. 2558-2567, 2008.
[17] C. Hocine,A. Benaissa, “New Binary Particle Swarm Optimization Algorithm for Surveillance and Camera Situation Assessments,” Journal of Electrical Engineering & Technology, pp. 1-11, 2021.
[18] T.-W. Sung,C.-S. Yang, "Coverage Improvement for Directional Sensor Networks," Advances in Intelligent Systems and Applications - Volume 1, Smart Innovation, Systems and Technologies R.-S. Chang, L. C. Jain and S.-L. Peng, eds., pp. 541-550: Springer Berlin Heidelberg, 2013.
[19] M. Huadong, Z. Xi,M. Anlong, "A Coverage-Enhancing Method for 3D Directional Sensor Networks." pp. 2791-2795.
[20] M. Varposhti, M. Dehghan,R. Safabakhsh, “Distributed Topological Camera Selection Without Location Information,” Sensors Journal, IEEE, vol. 14, no. 8, pp. 2579-2589, 2014.
[21] H. Chintakunta,H. Krim, “Distributed Localization of Coverage Holes Using Topological Persistence,” Signal Processing, IEEE Transactions on, vol. 62, no. 10, pp. 2531-2541, 2014.
[22] F. Yan, W. Ma, F. Shen, W. Xia,L. Shen, “Connectivity based k-coverage hole detection in wireless sensor networks,” Mobile Networks and Applications, vol. 25, no. 2, pp. 783-793, 2020.
[23] M. Varposhti, V. Hakami,M. Dehghan, “Distributed coverage in mobile sensor networks without location information,” Autonomous Robots, vol. 44, no. 3, pp. 627-645, 2020.
[24] E. Hörster,R. Lienhart, "Optimal Placement of Multiple Visual Sensors," Multi-Camera Networks: Concepts and Applications: Elsevier, 2009.
[25] A. Hatcher, Algebraic Topology: Cambridge, U.K.: Cambridge Univ. Press, 2002.
[26] F. H. Croom, Basic Concepts of Algebraic Topology: Springer-Verlag, New York eidelberg Berlin, 1978.
[27] R. Bott,L. Tu, Differential Forms in Algebraic Topology: New york: Springer-Verlag, 1995.
[28] A. Muhammad,M. Egerstedt, "Control using higher order Laplacians in network topologies." pp. 1024-1038.
[29] D. Bertsimas,J. N. Tsitsiklis, Introduction to Linear Optimization: Athena Scientific, Belmont, MA, 1997.