حل مساله مستقیم میدان‌های مغناطیسی بیرون سر انسان با استفاده از مدل جدید چهار لایة غیرهم‌مرکز کروی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشیار، دانشکده برق و کامپیوتر، دانشگاه صنعتی نوشیروانی، بابل، ایران

2 دانشجوی دکتری، گروه مهندسی برق-مخابرات، دانشگاه صنعتی نوشیروانی، بابل، ایران

چکیده

در این مقاله به روش حل مساله مستقیم و با استفاده از مدل جدید هادی کروی غیر هم‌ مرکز چهار لایه برای سر انسان، میدان مغناطیسی در بیرون سر انسان بدست آمد. بکارگیری روش‌های عددی برای سر انسان با توجه به ابعاد و فرکانس پائین امواج مغزی از دقت کمی برخوردار است. بکارگیری مدل‌های هم‌مرکز با توجه به تفاوت شکل هندسی واقعی لایه‌های مختلف و کره‌های هم‌مرکز باعث ایجاد خطا در تخمین مکان منبع می‌شود. مدل سه لایه به دلیل نادیده گرفتن تفاوت قابلیت هدایت مغز و مایع مغزی اطراف مغز می‌تواند باعث ایجاد خطا شود. بنابراین نتایج مربوط به مدل کروی چهار لایة غیرهم‌مرکز در این مقاله نسبت به نتایج مربوط به مدل کروی سه لایه دقیقتر است. مدل کروی دارای لایه‌های همگن است یعنی ضرایب هدایت الکتریکی هر لایه در تمام نقاط آن لایه یکسان است. معادلات به روش تحلیلی و با استفاده از یک دوقطبی به عنوان منبع، بدست آمد. با توجه به نمودارهای بدست آمده از این معادلات مشاهده شد میدان مغناطیسی مربوط به مدل جدید مورد تایید است.

کلیدواژه‌ها


عنوان مقاله [English]

Forward Problem Solution of Mgnetic Fields Outside of Human Head Using New Four Layer Eccentric Spherical Model

نویسندگان [English]

  • B. Zakeri 1
  • T. Moghimi Kandelousy 2
1 Department of Electrical and Computer, Noshirvani University of Technology, Babol, Iran
2 Department of Electrical and Computer, Noshirvani University of Technology, Babol, Iran
چکیده [English]

In this paper, the magnetic field outside human head was obtained by method of forward problem solution and using new four layer eccentric spherical conductor model for human head. The use of numerical methods for human head has little accuracy due to dimensions of human head and low frequency of brain waves. Using cocentric models due to the difference in the actual geometric shape of different layers of human head and cocentric spheres causes errors in estimating source location. The three layer model can cause errors due to ignoring difference in conductivity between the brain and the cerebrospinal fluid around the brain. Therefore, the results related to eccentric four layer spherical model in this paper are more accurate than the results related to three layer spherical model. The spherical model has isotropic layers, that is, the electrical conductivity coefficients of each layer are the same at all points of that layer. The equations were obtained analytically using a dipole as a source. According to our results, it was observed that the magnetic field graph of the new model has little changes compared with to other models.

کلیدواژه‌ها [English]

  • Forward problem solution
  • magnetic field
  • four layer eccentric spherical model
  • human head
  • electrical dipole
[1] J. Vorwerk, J. Cho, S.Rampp, H. Hamer, T. Knosche, C. Wolters, "A guideline for head volume conductor modeling in EEG and MEG", NeuroImage, vol. 100, pp. 590-607, 2014.
[2] C. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. Koch, R. Macleod, "Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling", NeuroImage, vol. 30, no. 3, pp. 813-826, 2006.
[3] M. Alcocer‐Sosa, D. Gutiérrez, "Third‐order harmonic expansion of the magnetoencephalography forward and inverse problems in an ellipsoidal brain model", International Journal for Numerical Methods in Biomedical Engineering, vol. 33, no. 4, pp. 281-295, 2017.
[4] G. Dassios, A.S. Fokas, "Electro-magneto-encephalography for a three-shell model dipoles and beyond for the spherical geometry", Inverse Problems, vol. 25, no. 3, pp. 35-54, 2009.
[5] Z. Zhang, "A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres", Physics in Medicine & Biology, vol. 40,no. 3, pp. 335-349, 1995.
[6] P. Berg, M. Scherg, "A fast method for forward computation of multiple-shell spherical head models", Electroencephy and Clinical Neurophysiology, vol. 90, no. 1, pp. 58-64, 1994.
[7] J.C. de Munck, "The potential distribution in a layered anisotropic spheroidal volume conductor", Journal of  Applied Physics, vol. 64, no. 2, pp. 464-470, 1988.
[8] J.O. Nieminen, M. Stenroos, "The magnetic field inside a layered anisotropic spherical conductor due to internal sources", Journal of Applied Physics vol. 119, no. 2, pp. 239-250, 2016.
[9] B.N. Cuffin, "Eccentric spheres models of the head", IEEE Transactions on Biomedical Engineering vol. 38, no. 9, pp. 871–878, 1991.
[10] F. Vatta, P. Bruno, P. Inchingolo, "Multiregion Bicentric-Spheres Models of the Head for the Simulation of Bioelectric Phenomena", IEEE Transactions on Biomedical Engineering, vol. 52, no. 3, pp. 384–389, 2005.
[11] H. Khodabakhshi, A. Cheldavi, "Irradiation of a six-layered spherical model of human head in the near field of a half-wave dipole antenna", IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 3, pp. 680-690, 2010.
[12] E. Khodapanah, "Calculation of electromagnetic scattering from an inhomogeneous sphere", IEEE Transactions on Antennas and Propagation, vol. 67, no. 3, pp. 1772-1778, 2018.
[13] Z.M. Lwin, M. Yokota, "Numerical analysis of SAR and temperature distribution in two dimensional human head model based on FDTD parameters and the polarization of electromagnetic wave", AEU-International Journal of Electronics and Communications, vol.104, pp. 91-98, 2019.
[14] T. Nara, J. Oohama, M. Hashimoto, T. Takeda, S. Ando, "Direct reconstruction algorithm of current dipoles for vector magnetoencephalography and electroencephalography" Physics in Medicine & Biology, vol. 52, pp. 3859–3879, 2007.
[15] G. Dassios, A.S. Fokas, "Electro-magneto-encephalography for the three-shell model: a single dipole in ellipsoidal geometry", Mathematical Methodes in the Applied Science, vol. 35, no. 12, pp. 1415-1422, 2012.
[16] G. Dassios, F. Kariotou, "Magnetoencephalography in ellipsoidal geometry", Journal of Mathematical Physics, vol. 44, pp. 220–241, 2003.
[17] A.P. Moneda, M.P. Ioannidou, D.P. Chrissoulidis, "Radio-wave exposure of the human head: analytical study based on a versatile eccentric spheres model including a brain core and a pair of eyeballs", IEEE Transactions on Biomedical Engineering, vol. 50, pp. 667–676, 2003.
[18] M.P. Ioannidou, D.P. Chrissoulidis, "EM-wave scattering by a sphere with multiple spherical inclusions", Journal of the Optical Society America A, vol. 19, no. 3, pp. 505–512, 2002.
[19] S.H. Hamada, M. Masutani, T. Kobayashi, "Time-harmonic electromagnetic field analysis in multisphere model by gumerov’s method of  two scalar potentials", Electrical Engineering in Japan, vol. 178, no. 2, pp. 168–176, 2012.
[20] ستار صمدی گرجی، بیژن ذاکری، رضا خانبابایی، «مدلسازی الکترومغناطیسی امواج مغزی بر اساس تحلیل تمام موج»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 3، صفحات 1305-1314، 1399.
 [21] سید عابد حسینی، محمدباقر نقیبی سیستانی، محمدرضا اکبرزاده توتونچی، «ارتباط مغز-رایانه دوبعدی مبتنی بر توجه انتخابی دیداری به کمک سیگنال های MEG»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 2، صفحات 74-65، 1394.
[22] D.B. Geselowitz, "On the magnetic field generated outside an inhomogeneous volume conductor by internal current sources", lEEE Transactions on Magnnetics, vol.9, no.2, pp. 346-347,1970.
[23] B.N. Cuffin, D. Cohen, "Magnetic fields of a dipole in special volume conductor shapes", IEEE Transactions on Biomedical Engineering, vol. 4, pp. 372–381, 1977.
[24] J.W. Meijs, O.W. Weier, M.J. Peters, A. D. Van Oosterom, "On the numerical accuracy of the boundary element method (EEG application) ", IEEE transactions on Biomedical Engineering, vol. 36, no.10, pp. 1038-1049, 1989.
[25] F. Drechsler, J. Vorwerk, J. Haueisen, L. Grasedyck, C.H. Wolters, "Validation of EEG forward modeling approaches in the presence of anisotropy in the source space", ArXiv:2208.03081, 2022.