پیاده‌سازی آنتن آرایه بازتابی تک‌لایه، کم‌هزینه و پهن‌باند با استفاده از زیرلایه غیرهمگن و پچ‌های پاپیونی

نوع مقاله : علمی-پژوهشی

نویسندگان

استادیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه زنجان، زنجان، ایران

چکیده

در این مقاله، نوعی آنتن آرایه بازتابی تک­لایه و کم­هزینه در باندX  معرفی می­شود که در آن، آرایه­ای از پچ­های پاپیونی­شکل روی زیرلایه­ای غیرهمگن چاپ شده­اند. ساخت زیرلایه غیرهمگن با استفاده از حفره­های هوایی متناوبی است که داخل عایق FR4 سوراخکاری شده است. در تحلیل سلول واحد این ساختار، از دو پارامتر مختلف پچ پاپیونی (طول و زاویه) برای حصول دیاگرام فازی استفاده شده است که در مجموع، محدوده­ای فازی نزدیک به 700 درجه بدست آمده است که گزینه خوبی برای طراحی آنتن آرایه بازتابی پهن­باند است. در روند طراحی آنتن، از روش سنتز فاز کارآمدی استفاده می­شود تا تاثیرات نامطلوب پاشندگی فرکانس در پهنای باند کاری آنتن کاهش یابد. این روش، چیدمان عناصر پچ آرایه را بهینه می­سازد و به طراحی آنتن آرایه بازتابی با پاسخ فرکانسی خوب کمک می­کند. برای ارزیابی درستی نتایج حاصل از شبیه­سازی، آنتن آرایه بازتابی با زیرلایه غیرهمگن و با ابعاد 270×270×2.4mm3 و فاصله کانونی 26.9 سانتیمتر شده است. اندازه­گیری­ها، بیشینه بهره 28.1dB و بازده 57.5 درصد را نشان می­دهد بطوری­که پهنای باند بهره 1.5-dB آن 34درصد است. این نتایج با بهره حاصل از اندازه­گیری آنتن آرایه بازتابی با زیرلایه همگن نیز مقایسه شده است. نشان داده می­شود که استفاده از زیرلایه غیرهمگن سبب افزایش بهره بیشینه و پهنای باند آنتن بازتابی پیشنهادی شده است. 

کلیدواژه‌ها


عنوان مقاله [English]

Single-layer, Low-cost, and Broadband Reflectarray Antenna Using Inhomogeneous Dielectric and a Class of Cross Bow-tie Elements

نویسندگان [English]

  • M. Rafaei-Booket
  • M. Bozorgi
Faculty of Electrical and Computer Engineering, University of Zanjan, Zanjan, and Iran.
چکیده [English]

In this paper, a class of low-cost, and single-layer reflectarray antenna is proposed for X-band in which an array of cross bow-tie patches is printed on an inhomogeneous substrate. Such an inhomogeneous substrate is made up periodic air-holes drilled within FR4 dielectric. In analyzing the unit cell of such a structure, two different parameters of cross bow-tie patch (length and angle) are varied and a phase range close to 700o is obtained that is a good choice for designing a broadband reflectarray. In the design procedure, an efficient phase synthesis technique is applied to minimize the adverse effects of frequency dispersion causing by the differential space phase delay at different frequencies. This technique optimizes the metallization arrangement, and helps to design a reflectarray with a good frequency response. To validate the obtained numerical results, a 270×270×2.4mm3 reflectarray with focal length 26.9cm is fabricated and measured. Measurements show a peak gain 28.1dB with a 1.5-dB gain bandwidth of 34% and maximum efficiency 57.5%. It is experimentally shown that the gain and bandwidth of the reflectarray with inhomogeneous dielectric is better than homogeneous one.

کلیدواژه‌ها [English]

  • Reflectarray antenna
  • Inhomogeneous substrate
  • Low-cost and broadband antenna
  • Bow-tie patch
[1] مهدی ابی­اوغلی، محمدناصر مقدسی، اصغر کشتکار، بهبد قلمکاری، «آنتن مجتمع فراپهن­باند و باند باریک برای کاربردهای رادیوشناختی و تنظیم­پذیری با استفاده از طراحی مدارهای تطبیق امپدانس»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 4، صفحات 1455-1461، 1399.
[2] بابک هنربخش، «آنتن آرایه بازتابی بهره بالای ارزان خودپوشا»، مجله مهندسی برق دانشگاه تبریز، جلد 50، شماره 4، صفحات 1899-1907، 1399.
[3] J. Huang, J. A. Encinar, "Reflectarray Antennas", Hoboken. NJ: John Wiley & Sons, 2008.
[4] D. M. Pozar, "Bandwidth of reflectarrays", Electronics Letters, vol. 39, no. 21, pp. 1490-1490, 2003.
[5] J. A. Encianr, J. A. Zornoza, "Three-layer printed reflectarrays for contoured beam space applications", IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 1138-1148, 2004.
[6] E. Carrasco, M. Barba, J. A. Encinar, "Reflectarray element based on aperture-coupled patches with slots and lines of variable length", IEEE Transactions on Antennas and Propagation, vol. 52, no. 3, pp. 820-825, 2007.
[7] E. Carrasco, J. A. Encinar, M. Barba, "Bandwidth improvement in large reflectarrays by using true-time delay", IEEE Transactions on Antennas and Propagation, vol. 56, no. 8, pp. 2496-2503, 2008.
[8] E. Ozturk, B. Saka, "Multilayer Minkoweski reflectarray antenna with improved phase performance", IEEE Transactions on Antennas and Propagation, vol. 69, no. 12, pp. 8961-8966, 2021.
[9] M. R. Chaharmir, J. Shaker, N. Gagnon, D. Lee, "Design of broadband, single layer dual band large reflectarray usig multi open loop elements", IEEE Transactions on Antennas and Propagation, vol. 58, no. 9, pp. 2875-2883, 2010.
[10] Q. Wang, Z. H. Shao, Y. J. Cheng, P. K. Li, "Broadband Low-Cost Reflectarray Using Modified Double-Square Loop Loaded by Spiral Stubs", IEEE Transaction on Antennas and Propagation, vol. 63, no. 9, pp. 4224-4229, 2015.
[11] D. R. Prado, A. Campa, M. R. Pino, J. Encinar, F. Las-Heras, "Design, manufacture and measurement of a low-cost reflectarray for global earth coverage", IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1418-1421, 2015.
[12] H. Rajagopalan, Y. Rahmat-Samii, "On the reflection characteristics of a reflectarray element with low-loss and high-loss substrates", IEEE Antennas and Propagation Magazine, vol. 52, no. 4, pp. 73-85, 2010.
[13] F. Costa, A. Monorchio, "Cloased-form analysis of reflection losses in microstrip reflectarray antennnas", IEEE Transactions on Antennas and Propagation, vol. 60, no. 10, pp. 4650-4660, 2012.
[14] J. Ethier, M. R. Chaharmir, and J. Shaker, "Loss reduction in reflectarray designs using sub-wavelength coupled-resonant elements", IEEE Transactions on Antennas and Propagation, vol. 60, no. 11, pp. 5456-5459, 2012.
[15] M. Rafaei-Booket, S. M. Mousavi, "Efficient Analysis method and design approach for broadband reflectarrays with isotropic/-artificial anisotropic substrates", IET Microwaves, Antennas & Propag., vol. 14, no. 10, pp. 1108-1116, 2020.
[16] M. Rafaei-Booket, S. M. Mousavi, "New phase realization approach for implementation of broadband reflectarrays", International Journal of Information and Communication Technology & Research, vol. 13, no. 1, pp. 1-7, 2021.
[17] P. Nayeri, F. Yang, A. Z. Elsherbani, "A broadband microstrip reflectarray using sub-wavelength patch elements", IEEE Antenna and Propagation Society International Symposium, 2009.
[18] M. Rafaei-Booket, Z. Atlasbaf, M. Shahabadi, "Broadband reflectarray antenna on a periodically perforated substrate", IEEE Transactions on Antennas and Propagation, vol. 64, no. 8, pp. 3711-3717, 2016.
[19] D. M. Pozar, "Wideband reflectarrays using artificial impedance surfaces", Electronics Letters, vol. 43, no. 3, pp. 148–149, 2007.
[20] M. R. Chaharmir, J. Shaker, H. Legay, "Broadband design of single-layer large reflectarray using multi cross loop elements", IEEE Transaction on Antennas and Propagation, vol. 57, no. 10, pp. 3363 - 3366, 2009.
[21] A. Vosoogh, K. Keyghobad, A. Khaleghi, S. Mansouri, "A high-efficiency Ku-band reflectarray antenna using single-layer multi-resonance elements", IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 891-894, 2014.
[22] P.-Y. Qin, Y. J. Guo, A. R. Weily, "Broadband reflectarray antenna using subwavelength elements based on double square meander-line rings", IEEE Transactions on Antennas and Propagation, vol. 64, no. 1, pp. 378–383, 2016.
[23] X. Li, X. Li, L. Yang, "Single-layer wide band-ratio reflectarray with orthogonal linear polarization", IEEE Access, vol. 8, pp. 93586 - 93593, 2020.
[24] D. Kundu, D. bhattacharya, R. Ruchi, "A single-layer broadband reflectarray in K-band using cross-loop slotted patch elements", IEEE Access, vol. 10, pp. 13490-13495, 2022.
[25] C. A. Balanis, "Antenna Theory: Analysis and Design, 3rd edition", John Wiley & Sons, 2005.
[26] Y. Mao, Sh. Xu, F. Yang, A. Z. Elsherbani, "A novel phase synthesis approach for wideband reflectarray design", IEEE Transactions on Antennas and Propagation, vol. 63, no. 9, pp. 4189-4193, 2015.
[27] H. Hasani, M. Kamyab, A. Mirkamali, "Low cross-polarization reflectarray antenna", IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1752-1756, 2011.
[28] M. Moeini-Fard, M. Khalaj-Amirhosseini, "Inhomogeneous perforated reflect-array antennas", Wireless Engineering Technology, vol. 2, no. 1, pp. 80-86, 2011.
[29] M. Abed-Elhady, W. Hong, Y. Zhang, "A Ka-band reflectarray implemented with a single-layer perforated dielectric substrate", IEEE Antennas and Wireless Propagation Letters, vol. 11, 2012.
[30] M. Rafaei-Booket, Z. Atlasbaf, "New Ku-band reflectarray antenna by using anisotropic superstrate on an artificial magnetic conductor", Inernational Journal of Microwave and Wireless Technologies, vol. 9, pp. 831-841, 2016.
[31] B. Xi, Q. Xue, Y. Cai, Y. Wang, S. Yang, R. Zhang, "A novel wideband perforated dielectric reflectarray", Microwave and Optical Technology Letters, vol. 61, no. 12, pp. 2739-2745, Jul. 2019.
[32] Y. He, Z. Gao, D. Jia, W. Zhang, B. Du, Z. N. Chen, "Dielectric Metamaterial-Based Impedance-Matched Elements for Broadband Reflectarray", IEEE Transactions on Antennas and Propagation, vol.65, no.12, pp.7019-7028, 2017.
[33] M. Rafaei-Booket, M. Bozorgi, "Low-cost inhomogeneous material for low-loss RCS reflectarray antenna impelemntation", AEU-International Journal of Electronics and Communications, vol. 149, pp. 154182, 2022.