کنترل مد لغزشی مرتبه کسری تطبیقی برای ژنراتور مغناطیس دائم سنکرون همراه با رویتگر اغتشاش

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی برق، دانشگاه صنعتی همدان، همدان، ایران

2 دانشیار، گروه مهندسی برق، دانشگاه صنعتی همدان، همدان، ایران

چکیده

در این مقاله، یک روش کنترل مد لغزشی مرتبه کسری تطبیقی جدید برای ردگیری نقطه حداکثر توان ژنراتور مغناطیس دائم سنکرون (PMSG) طراحی شده است. هدف از کنترل، ردیابی سرعت روتور بهینه به منظور استخراج بیشینه توان از سیستم توربین بادی در حضور اغتشاش و نامعینی پارامتری است. ابتدا یک سطح لغزش مرتبه کسری جدید تعریف می­شود. از آنجایی که در کنترل کننده مدلغزشی برای تضمین پایداری سیستم حلقه بسته، دانستن کران بالای نامعینی­ها و اغتشاشات لازم است، و از طرفی محاسبه آن برای مسائل کاربردی از جمله توربین بادی مشکل بوده و با خطا همراه است. لذا در ادامه پارامترهای سیگنال کنترل، توسط قوانین تطبیقی پیشنهادی، بصورت برخط تخمین زده می­شوند تا ضمن افزایش سرعت همگرایی متغیرهای حالت به مقدار مرجع و کاهش پدیده چترینگ، قوام سیستم را در برابر اغتشاش خارجی و نامعینی پارامتری افزایش دهند. از سویی دیگر با توجه به ناشناخته بودن دینامیک اغتشاش، یک رویتگر اغتشاش جهت تخمین اغتشاش خارجی و نامعینی پارامتری طراحی شده است. سپس، اثبات پایداری سیستم حلقه بسته کلی همراه با رویتگر اغتشاش با استفاده از تئوری لیاپانوف انجام شده است. در آخر، نتایج شبیه‌سازی با در نظر گرفتن دو سناریو متفاوت؛ اولی با تغییرات باد پله همراه با اغتشاش خارجی و دومی به ازای تغییرات سرعت باد سینوسی در حضور نامعینی پارامتری بدست آمده‌اند. نتایج شبیه‌سازی با روش متداول مد لغزشی مرتبه صحیح مقایسه شده و خروجی‌ها نشان‌دهنده عملکرد موثر کنترل‌کننده پیشنهادی در ردیابی مسیر مرجع، افزیش قوام آن در برابر نامعینی و اغتشاش و کاهش پدیده چترینگ است.

کلیدواژه‌ها


عنوان مقاله [English]

Adaptive Fractional Order Sliding Mode Control for PMSG with Disturbance Observer

نویسندگان [English]

  • A. M. Aghazamani 1
  • H. Delavari 2
1 Electrical Engineering Department, Hamedan University of Technology, Hamedan, Iran.
2 Electrical Engineering Department, Hamedan University of Technology, Hamedan, Iran.
چکیده [English]

In this paper, a new adaptive fractional-order sliding mode controller is designed for a Permanent Magnet Synchronous Generator (PMSG) to track the maximum power point. The controller objective is to track the desired generator speed to extract the maximum power from the wind turbine system in the presence of parametric uncertainty and external disturbances. First, a new fractional order sliding surface is defined. To ensure the stability of the closed-loop system in the sliding model controller it is required to know the upper bounds of uncertainties and disturbances, where it is difficult to calculate these bounds for practical applications such as wind turbines. Therefore, the control signal parameters are estimated online by the proposed adaptive laws, in order to increase the convergence rate of the state variables to the reference value and reduce the chatting phenomenon, also to increase the system robustness against external disturbances and parametric uncertanity. On the other hand, due to the unknown disturbance dynamics, a disturbance observer is designed to estimate external disturbances and parametric uncertainty. Then, the stability of the general closed-loop system together with the disturbance observer is performed using Lyapunov's theory. Finally, the simulation results considering two different scenarios; first for step wind changes with external disturbance, second for changes in sine wind speed with parametric uncertainty. The results are compared with conventional sliding mode controller and results show the effective performance of the proposed controller in tracking the reference value, increasing its robustness against uncertainty and disturbance and reducing the chatting phenomenon.

کلیدواژه‌ها [English]

  • Wind turbine
  • permanent magnet synchronous generator (PMSG)
  • sliding mode control
  • fractional calculus
  • adaptation laws
  • disturbance observer
  • parametric uncertainties
[1] Enevoldsen, S. V. Valentine, and B. K. Sovacool, "Insights into wind sites: critically assessing the innovation, cost, and performance dynamics of global wind energy development," Energy policy, vol. 120, pp. 1-7, 2018.
[2]  م. رحیمی, ع. حقی، م. بلالی، "مقایسه روشهای کنترل مبدل سمت ماشین در توربین-ژنراتور بادی مبدل کامل با ژنراتور سنکرون مغناطیس دائم"، مجله مهندسی برق دانشگاه تبریز، دوره 49، شماره 2،.صفحه 599-587، سال 1398.
[3]  P. Li, L. Xiong, F. Wu, M. Ma, and J. Wang, "Sliding mode controller based on feedback linearization for damping of sub-synchronous control interaction in DFIG-based wind power plants," International Journal of Electrical Power & Energy Systems, vol. 107, pp. 239-250, 2019.
[4]  A. Dali, S. Abdelmalek, A. Bakdi, and M. Bettayeb, "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine," Renewable Energy, vol. 172, pp. 1021-1034, 2021.
[5]  E. H. Dursun and A. A. Kulaksiz, "Second-order sliding mode voltage-regulator for improving MPPT efficiency of PMSG-based WECS," International Journal of Electrical Power & Energy Systems, vol. 121, p. 106149, 2020.
[6]  L. Pan and C. Shao, "Wind energy conversion systems analysis of PMSG on offshore wind turbine using improved SMC and Extended State Observer," Renewable Energy, vol. 161, pp. 149-161, 2020.
[7]  Y. Berrada and I. Boumhidi, "New structure of sliding mode control for variable speed wind turbine," IFAC Journal of Systems and Control, vol. 14, p. 100113, 2020.
[8]  W. Xin, Z. Wan-li, S. Ceng, and Q. Bin, "Chattering free sliding mode pitch control of PMSG wind turbine," IFAC Proceedings Volumes, vol. 47, no. 3, pp. 6758-6763, 2014.
[9]  A. Azizi, H. Nourisola, and S. Shoja-Majidabad, "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable energy, vol. 135, pp. 55-65, 2019.
[10] H. Schulte and E. Gauterin, "Fault-tolerant control of wind turbines with hydrostatic transmission using Takagi–Sugeno and sliding mode techniques," Annual Reviews in Control, vol. 40, pp. 82-92, 2015.
[11] M. Sami and R. J. Patton, "Fault tolerant adaptive sliding mode controller for wind turbine power maximisation," IFAC Proceedings Volumes, vol. 45, no. 13, pp. 499-504, 2012.
[12] M. Shajiee, S. K. H. Sani, S. Shamaghdari, and M. B. Naghibi-Sistani, "Design of a robust H∞ dynamic sliding mode torque observer for the 100 KW wind turbine," Sustainable Energy, Grids and Networks, vol. 24, p. 100393, 2020.
[13] T. D. Do, "Disturbance observer-based fuzzy SMC of WECSs without wind speed measurement," IEEE access, vol. 5, pp. 147-155, 2016.
[14] H. Habibi, I. Howard, S. Simani, and A. Fekih, "Decoupling adaptive sliding mode observer design for wind turbines subject to simultaneous faults in sensors and actuators," IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 837-847, 2021.
[15] A. Tohidi, H. Hajieghrary, and M. A. Hsieh, "Adaptive disturbance rejection control scheme for DFIG-based wind turbine: Theory and experiments," IEEE Transactions on Industry Applications, vol. 52, no. 3, pp. 2006-2015, 2016.
[16] J. Gómez-Aguilar, H. Yépez-Martínez, R. Escobar-Jiménez, C. Astorga-Zaragoza, and J. Reyes-Reyes, "Analytical and numerical solutions of electrical circuits described by fractional derivatives," Applied Mathematical Modelling, vol. 40, no. 21-22, pp. 9079-9094, 2016.
[17] S. S. Ray, S. Sahoo, and S. Das, "Formulation and solutions of fractional continuously variable order mass–spring–damper systems controlled by viscoelastic and viscous–viscoelastic dampers," Advances in Mechanical Engineering, vol. 8, no. 5, p. 1687814016646505, 2016.
[18] H. Delavari, R. Ghaderi, A. Ranjbar, and S. Momani, "Synchronization of chaotic nonlinear gyros using fractional order controller," in New Trends in Nanotechnology and Fractional Calculus Applications: Springer, 2010, pp. 479-485.
[19] H. Delavari and M. Mohadeszadeh, "Robust finite-time synchronization of non-identical fractional-order hyperchaotic systems and its application in secure communication," IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 1, pp. 228-235, 2016.
[20] س. ب. فاضلی اصل، س. س. موسی پور، "طراحی کنترل‌کننده مد لغزشی دینامیکی مرتبه کسری تطبیقی برای سیستم ژیروسکوپ سه محوره بر اساس روش بازگشت به عقب"، مجله مهندسی برق دانشگاه تبریز، دوره 49، شماره 2، صفحه 734-721، سال 1398.
[21] L. Xiong, P. Li, M. Ma, Z. Wang, and J. Wang, "Output power quality enhancement of PMSG with fractional order sliding mode control," International Journal of Electrical Power & Energy Systems, vol. 115, p. 105402, 2020.
[22] M. Abolvafaei and S. Ganjefar, "Two novel approaches to capture the maximum power from variable speed wind turbines using optimal fractional high-order fast terminal sliding mode control," European Journal of Control, vol. 60, pp. 78-94, 2021.
[23] I. Sami, S. Ullah, N. Ullah, and J.-S. Ro, "Sensorless fractional order composite sliding mode control design for wind generation system," ISA transactions, vol. 111, pp. 275-289, 2021.
[24] M. Mohamed, H. Wang, and Y. Tiang, "Indirect power control of DFIG based wind turbine using fractional order intelligent proportional integral sliding mode controller," in 2021 40th Chinese Control Conference (CCC), 2021: IEEE, pp. 5939-5944.
[25] N. Ullah, I. Sami, M. S. Chowdhury, K. Techato, and H. I. Alkhammash, "Artificial intelligence integrated fractional order control of doubly fed induction generator-based wind energy system," IEEE Access, vol. 9, pp. 5734-5748, 2020.
[26] N. Ullah, M. A. Ali, A. Ibeas, and J. Herrera, "Adaptive fractional order terminal sliding mode control of a doubly fed induction generator-based wind energy system," IEEE Access, vol. 5, pp. 21368-21381, 2017.
[27] H. Delavari and K. Zamanizadeh, "Fractional order fault-tolerant control of doubly-fed induction generator based wind turbine," in IEEE International Power System Conference (PSC), pp. 174-180, 2019.
[28] L. Pan and X. Wang, "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control," Renewable Energy, vol. 159, no. 0960-1481, pp. 221-237, 2020.
[29] A. Uehara et al., "A coordinated control method to smooth wind power fluctuations of a PMSG-based WECS," IEEE Transactions on energy conversion, vol. 26, no. 2, pp. 550-558, 2011.
[30] H. Duan, M. Lu, Y. Sun, J. Wang, C. Wang, and Z. Chen, "Fault diagnosis of PMSG wind power generation system based on LMD and MSE," Complexity, vol. 2020, 2020.
[31] S. Das, Functional fractional calculus. Springer Science & Business Media, 2011.
[32] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, 1998.
[33] H. Dai and W. Chen, "New power law inequalities for fractional derivative and stability analysis of fractional order systems," Nonlinear Dynamics, vol. 87, no. 3, pp. 1531-1542, 2017.
[34] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Gallegos, "Lyapunov functions for fractional order systems," Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 9, pp. 2951-2957, 2014.
[35] W.-H. J. I. A. t. o. m. Chen, "Disturbance observer based control for nonlinear systems," vol. 9, no. 4, pp. 706-710, 2004.
[36] "High-order sliding mode control for variable speed PMSG-wind turbine-based disturbance observer," International Journal of Modelling, Identification and Control, vol. 32, no. 1, pp. 85-92, 2019.
[37] A. Isidori, E. Sontag, and M. Thoma, Nonlinear control systems. Springer, 1995.