QDFSN: QoS-enabled Dynamic and Programmable Framework for SDN

نوع مقاله : علمی-پژوهشی

نویسندگان

1 Electrical Engineering Dept., K. N. Toosi University of Technology, Tehran, Iran

2 Electrical Engineering Dept., K. N. Toosi University of Technology, Tehran, Iran.

چکیده

Software Defined Network (SDN) can integrate a lot of network functions such as network resource management into a consolidated framework. TCP operates in these networks with low information traffic characteristics. As a result, it has to continuously change its congestion window size in order to handle drastic changes in the network or its traffic conditions. As a result, TCP frequently overshoots or undershoots its transmission rate, making it a native congestion control protocol. To overcome that problem, we have proposed a new QoS framework for SDN called QDFSN (QoS-enabled Dynamic and Programmable Framework for SDN) which can be effectively applied in Data Centers as well. In this, and by means of AQM (Active Queue Management), a new function for detecting the upcoming congestion situation is designed. In each node, a developed mathematical model is used to calculate the best parameters of the node adaptively, especially the service rate, to minimize the congestion in the network. This model is tested in many NS-2 scenarios, and the results are presented. The results show improvements in selected QoS parameters like throughput and delay. We conclude that QDFSN-based congestion control shortens the process of adapting TCP to network circumstances, and enhances the TCP performance.

کلیدواژه‌ها


عنوان مقاله [English]

QDFSN: QoS-enabled Dynamic and Programmable Framework for SDN

نویسندگان [English]

  • Y. Darmani 1
  • M. Sangelaji 2
1 Electrical Engineering Dept., K. N. Toosi University of Technology, Tehran, Iran.
2 Electrical Engineering Dept., K. N. Toosi University of Technology, Tehran, Iran.
چکیده [English]

Software Defined Network (SDN) can integrate a lot of network functions such as network resource management into a consolidated framework. TCP operates in these networks with low information traffic characteristics. As a result, it has to continuously change its congestion window size in order to handle drastic changes in the network or its traffic conditions. As a result, TCP frequently overshoots or undershoots its transmission rate, making it a native congestion control protocol. To overcome that problem, we have proposed a new QoS framework for SDN called QDFSN (QoS-enabled Dynamic and Programmable Framework for SDN) which can be effectively applied in Data Centers as well. In this, and by means of AQM (Active Queue Management), a new function for detecting the upcoming congestion situation is designed. In each node, a developed mathematical model is used to calculate the best parameters of the node adaptively, especially the service rate, to minimize the congestion in the network. This model is tested in many NS-2 scenarios, and the results are presented. The results show improvements in selected QoS parameters like throughput and delay. We conclude that QDFSN-based congestion control shortens the process of adapting TCP to network circumstances, and enhances the TCP performance.

کلیدواژه‌ها [English]

  • SDN (Software Defined Network)
  • QoS (Quality of Service)
  • Data Center
[1]     M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda, “Less is more: trading a little bandwidth for ultra-low latency in the data center”, NSDI’12 Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, 2012, San Jose, CA pp. 19–19.
[2]     N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner,  “OpenFlow: enabling innovation in campus networks”, ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008. DOI: 10.1145/1355734.1355746.
[3]     V. Jacobson, “Congestion avoidance and control”, ACM SIGCOMM CCR, vol. 25, no. 1, pp. 157–187, 1995. DOI:10.1145/205447.205462.
[4]     M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP)”, ACM SIGCOMM, 2010, New Delhi, India pp. 63–74. DOI:10.1145/1851182.1851192.
[5]     Sandvine global Internet report. https://www.sandvine.com/hubfs/downloads/phenomena/2018-phenomena-report.pdf, Oct. 2018.
[6]     T. Benson, A. Akella, and D. Maltz, “Network traffic characteristics of data centers in the wild”, Internet Measurement Conference, 2010, Melbourne, Australia pp. 267–280. DOI: 10.1145/1879141.1879175.
[7]     Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understanding TCP incast throughput collapse in datacenter networks”, WREN, 2009,  Barcelona, Spain pp. 73–82. DOI:10.1145/1592681.1592693.
[8]     C. Jerry, “Tuning TCP Parameters for the 21st century”, http://www6.ietf.org/mail-archive/web/tcpm/current/msg04707.html.
[9]     V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-grained TCP retransmissions for datacenter communication”, SIGCOMM, 2009, Barcelona, Spain, pp. 303–314. DOI:10.1145/1592568.1592604.
[10]  W. Cerroni, M. Garbaoei, “Cross-layer resource orchestration for cloud service delivery: A seamless SDN approach”, Computer Networks, vol. 87, pp. 16-32, 2015. DOI:10.1016/j.comnet.2015.05.008.
[11]  B. Ahmadi; Z. Movahedi, “Stable Distributed Load Balancing between Controllers in Software Defined Networks”, Article 2, vol. 49, Issue 1 - Serial Number 87, Spring 2019, Page 13-23.
[12]  Greenberg, G. Hjalmtysson, D. A Maltz, A. Myers, J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach to network control and management”, ACM SIGCOMM Computer Communication Review, 2005, vol. 35, no. 5, pp. 41-54. DOI:10.1145/1096536.1096541.
[13]  Software Defined Networks (SDN) talk at Structure 2010. http://www.openflowswitch. org/wp/2010/07/software-defined-networks-sdn-talk-at-structure-2010/.
[14]  H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and Z. Cai, “Tesseract: A 4D network control plane”, 4th Symposium on Networked Systems Design and Implementation, 2007, Cambridge, Massachusetts, USA.
[15]  M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane: taking control of the enterprise”, SIGCOMM '07 Proceedings of the 2007 conference on Applications, technologies, architectures, and protocols for computer communications, 2007, Kyoto, Japan vol. 37, no. 4, pp. 1–12. DOI:10.1145/1282380.1282382.
[16]  M. Karakus, A. Durresi, “Quality of Service (QoS) in Software Defined Networking (SDN): A survey”, Journal of Network and Computer Applications, vol. 80, pp. 200-218, 2017. DOI:10.1016/j.jnca.2016.12.019.
[17]  S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance”, IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397–413, 1993. DOI:10.1109/90.251892.
[18]  S. Floyd and K. Fall, “Router mechanisms to support end-to-end congestion control”, Technical report, 1997.
[19]  D. Lin and R. Morris, “Dynamics of random early detection”, Proceedings of the ACM SIGCOMM '97 ?Conference on Applications, technologies, architectures, and protocols for computer communication, 1997, Cannes, France,vol. 27, no.4, pp. 127–137. DOI:10.1145/263105.263154.
[20]  T. Ott Lakshman, T. V. Lakshman, and L. Wong,  “Sred: Stabilized red”, IEEE INFOCOM '99, Conference on Computer Communications, New York, NY, USA,1999, pp. 1346–1355. DOI: 10.1109/INFCOM.1999.752153.
[21]  R. Pan, B. Prabhakar, and K. Psounis, “Choke - a stateless active queue management scheme for approximating fair bandwidth allocation”, Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, 1999. DOI: 10.1109/INFCOM.2000.832269.
[22]  C. A. Grazia, N. Patriciello, M. Klapez and M. Casoni, “A cross-comparison between TCP and AQM algorithms: Which is the best couple for congestion control?”, 14th International Conference on Telecommunications (ConTEL), Zagreb, 2017, pp. 75-82. DOI: 10.23919/ConTEL.2017.8000042.
[23]  S. Floyd, “TCP and explicit congestion notification”, ACM Computer Communication Review, vol. 24, no. 5, pp. 10–23, 1994. DOI:10.1145/205511.205512.
[24]  J. Hong, C. Joo, and S. Bahk, “Active queue management algorithm considering queue and load states”,  Proceedings, 13th International Conference on Computer Communications and Networks, Chicago, IL, USA, 2007, vol. 30, pp. 886–89. DOI: 10.1109/ICCCN.2004.1401608.
[25]  J. W. Guck, A. Van Bemten, M. Reisslein and W. Kellerer,  “Unicast QoS Routing Algorithms for SDN: A Comprehensive Survey and Performance Evaluation”, IEEE Communications Surveys & Tutorials, vol. 99, pp. 1-1, 2017.  DOI: 10.1109/COMST.2017.2749760.
[26]  P. Hongyu, W. Weidong, and W. Chaowei, “QoS-guaranteed energy saving routing strategy using SDN central control for backbone networks”, The Journal of China Universities of Posts and Telecommunications , vol. 22, no. 5, pp. 92-100, 2015. DOI:10.1016/S1005-8885(15)60686-0.
[27]  J. Pang, G. Xu, X. Fu, K. Zhao,  “Horizon: a QoS management framework for SDN-based data center networks”,  Annals of Telecommunications, vol. 72, no. 1, pp. 597–605, 2017. DOI: 10.1007/s12243-017-0579-2.
[28]  S. Jeong, D. Lee, J. Hyun, J. Li and J. W. K. Hong, “Application-aware traffic engineering in software defined network”, 19th Asia-Pacific  Network Operations and Management Symposium (APNOMS), 2017,  Seoul, Korea (South), pp. 315-318. DOI:10.1109/APNOMS.2017.8094144.
[29]  A. Volkan Atli, M. Serkant Uluderya, S. Civanlar, B. Görkemli, A. Murat Tekalp, “TCP congestion avoidance for selective flows in SDN”, 26th Signal Processing and Communications Applications Conference (SIU), 2018. DOI: 10.1109/SIU.2018.8404643.
[30]  A. M. Abdelmoniem, B. Bensaou, A. James Abu, “Mitigating incast-TCP congestion in data centers with SDN”, Annals of Telecommunications, April 2018, Volume 73, Issue 3–4, pp. 263–277.DOI:10.1007/s12243-017-0608-1.
[31]  A. Kucminski, A. Al-Jawad, P. Shah and R. Trestian, “QoS-based routing over software defined networks”,  IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), 2017,  Cagliari, pp. 1-6. DOI: 10.1109/BMSB.2017.7986239.
[32]  Shakthipriya P., Bevi A.R.,  “Network Protocol-Based QoS Routing Using Software Defined Networking. Artificial Intelligence and Evolutionary Computations in Engineering Systems”, Springer, Singapore, pp. 363-374,  2017. DOI:10.1007/978-981-10-3174-8_32.
[33]  B. Siniarski, C. Olariu, P. Perry and J. Murphy, “OpenFlow based VoIP QoE monitoring in enterprise SDN”,  IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, 2017, pp.   660-663. DOI: 10.23919/INM.2017.7987354.
[34]  M. Ghobadi, “TCP Adaptation Framework in Data Centers. Doctor of Philosophy, Graduate Department of Computer Science”, University of Toronto, 2013.
[35]   A. Ghiasian, “Frequency scaling approach to reduce the power consumption of Openflow switches”, Tabriz Journal of Electrical Engineering, Volume 49, Issue 3 - Serial Number 89 , pp. 1273-1282 Autumn 2019.