پردازش تصویر با استفاده از کدگذاری تنک و طبقه‌بندی انطباقی

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی فناوری اطلاعات و کامپیوتر- دانشگاه صنعتی ارومیه

چکیده

: به‌دلیل افزایش حجم تصاویر تولیدشده توسط دوربین‌ها و دستگاه‌های مختلف، پردازش تصویر در بسیاری از کاربردها ازجمله پزشکی، امنیتی و رانندگی اهمیت و جایگاه بالایی یافته است. بااین‌حال بیشتر مدل‌های ایجادشده در حوزه پردازش تصویر کارایی چندانی نداشته و میزان خطای آن‌ها در برخی کاربردها تأثیرگذار است. علت اصلی ناکامی بیشتر مدل‌های ساخته‌شده، اختلاف توزیع بین داده‌های آموزشی (دامنه منبع) و داده‌های تست (دامنه هدف) می‌باشد. درواقع، مدل ساخته‌شده، قابلیت تعمیم‌دهی به داده‌هایی با خصوصیات و توزیع‌های متفاوت از داده‌های آموزشی را ندارد، به‌همین دلیل در مواجهه با داده‌های جدید دچار اُفت شدیدی می‌شود. در این مقاله ما یک روش جدید با نام کدگذاری تنک و طبقه‌بندی انطباقی (SADA) پیشنهاد می‌دهیم که یک مدل پردازش تصویری ایجاد می‌کند که در مقابل تغییرات داده‌ای مقاوم می‌باشد. مدل پیشنهادی با ایجاد یک زیر فضای مشترک بین دامنه‌های منبع و هدف اختلاف توزیع آن‌ها را به حداقل رسانده و موجب بهبود کارایی می‌شود. همچنین SADA با انتخاب نمونه‌هایی از دامنه منبع که با دامنه هدف مرتبط می‌باشند اختلاف توزیع بین دامنه‌ها را کاهش می‌دهد. علاوه‌بر آن، SADA با تطبیق پارامترهای مدل ایجادشده، یک مدل تطبیق‌پذیر برای مواجهه با شیفت داده‌ها ایجاد می‌کند. نتایج به‌دست‌آمده از آزمایش‌های متنوع، نشان می‌دهد که روش پیشنهادی ما، برتری قابل‌ملاحظه‌ای نسبت به تمام روش‌های تطبیق دامنه جدید دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Image Processing via Sparse Coding and Adaptive Classification

نویسندگان [English]

  • F. Sherafati
  • J. Tahmoresnezhad
Faculty of IT & Computer Engineering, Urmia University of Technology, Urmia, Iran
چکیده [English]

Due to the growing increase of generated images via cameras and various instruments, image processing has found an important role in most of practical usages including medical, security and driving. However, most of the available models has no considerable performance and in some usages the amount of error is very effective. The main cause of this failure in most of available models is the distribution mismatch across the source and target domains. In fact, the made model has no generalization to test data with different properties and distribution compared to the source data, and its performance degrades dramatically to face with new data. In this paper, we propose a novel approach entitled Sparse coding and ADAptive classification (SADA) which is robust against data drift across domains. The proposed model reduces the distribution difference across domains via generating a common subspace between the source and target domains and increases the performance of model. Also, SADA reduces the distribution mismatch across domains via the selection of the source samples which are related to target samples. Moreover, SADA adapts the model parameters to build an adaptive model to encounter with data drift. Our variety of experiments demonstrate that the proposed approach outperforms all stat-of-the-art domain adaptation methods.

کلیدواژه‌ها [English]

  • Image processing
  • visual domains adaptation
  • sparse coding
  • sample reweighting
  • adaptive classification
[1] S. J. Pan, I. W. Tsang, J. T. Kwok and Q. Yang, “Domain adaptation via transfer component analysis”, IEEE Trans. Neural Netw, vol. 22, no. 2, pp. 199–210, 2011.
[2] J. Tahmoresnezhad and S. Hashemi, “A generalized kernel-based random k-sample sets method for transfer learning”, Iran J Sci Technol Trans Electrical Eng, vol. 39, pp. 193-207, 2015.
[3] B. Okutmuştur, “Reproducing kernel Hilbert spaces”, 2005.
[4] X. Li, M. Fang, J. J. Zhang and J. Wu, “Sample selection for visual domain adaptation via sparse coding”, Signal Processing: Image Communication, vol 44, pp. 92-100, 2016.
[5] طاهره زارع بیدکی و محمدتقی صادقی، «بهینه‌سازی وزن‌ها در کرنل مرکب برای طبقه‌بند مبتنی بر نمایش تنک کرنلی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 3، صفحات 1059-1072، 1396.
[6] B. Gong, Y. Shi, F. Sha and K. Grauman, “Geodesic flow kernel for unsupervised domain adaptation”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2066-2073, 2012.
[7] L. Bruzzone and M. Marconcini, “Domain adaptation problems: a DASVM classification technique and a circular validation strategy”, IEEE Trans Pattern Anal Mach Intell, vol. 32, no. 5, pp. 770–787, 2010.
[8] B. Gong, K. Grauman and F. Sha, “Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation”, Proceedings of the International Conference on Machine Learning, vol. 28, no. 1, pp.222-230, 2013.
[9] M. Long, J. Wang, G. Ding, J. Sun and P. S. Yu, “Transfer joint matching for unsupervised domain adaptation”, IEEE conference on computer vision and pattern recognition, pp. 1410-1417, 2014.
[10] J. Tahmoresnezhad and S. Hashemi, “Visual domain adaptation via transfer feature learning”, KnowlInf Syst, vol. 50, no. 2, pp. 585-605, 2016.
[11] M. Long, J. Wang, G. Ding, S. J. Pan and P. Yu, “Adaptation regularization: a general framework for transfer learning”, IEEE Trans. Knowl. Data Eng, vol. 26, pp. 1076–1089, 2013.
[12] Jolliffe I, Principal component analysis, Wiley, vol. 2, pp. 433-459, 2002.
[13] K. Saenko, B. Kulis, M. Fritz and T. Darrell, “Adapting visual category models to new domains”, Proceedings of the European Conference on Computer Vision, pp. 213-226, 2010.
[14] G.Griffin, A. Holub and P. Perona, “Caltech-256 object category dataset”, Technical Report7694, 2007.
[15] J. J. Hull, “A database for handwritten text recognition research”, IEEE Trans. Pattern Anal. Mach. Intell, vol. 16, no. 5, pp. 550–554, 1994.
[16] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to document recognition”, Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
[17] T. Sim, S. Baker and M. Bsat, “The CMU pose, illumination, and expression (PIE) database”, Proceedingsof Fifth IEEE International Conference on Automatic Face Gesture Recognition, pp. 53-58, 2002.
[18] M. Long, J. Wang, G. Ding, J. Sun and S. YuPhilip, “Transfer feature learning with joint distribution adaptation”, IEEE international conference on computer vision, pp. 2200-2207, 2013.
[19] مهرداد حیدری ارجلو، سید قدرت اله سیف السادات و مرتضی رزاز، «یک روش هوشمند تشخیص جزیره در شبکه توزیع دارای تولیدات پراکنده مبتنی بر تبدیل موجک و نزدیک‌ترین k-همسایگی (kNN) »، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 1، صفحات 15-26، 1392.