مدل‌سازی دینامیکی چرخ‌دنده مغناطیسی هم‌محور بر مبنای مدار معادل مغناطیسی با استفاده از روش تحلیل گره

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده فنی و مهندسی - دانشگاه آزاد اسلامی واحد شهرقدس

2 دانشکده فنی و مهندسی- دانشگاه آزاد اسلامی واحد آشتیان

3 دانشکده فنی و مهندسی - دانشگاه آزاد اسلامی واحد تهران مرکزی

چکیده

چرخ­دنده­های مغناطیسی در مقایسه با نوع مکانیکی آن دارای ویژگی‌های زیادی از قبیل قابلیت اطمینان بالا، لرزش و نویز صوتی کمتر، محافظت در مقابل اضافه بار، مجزابودن شفت ورودی و خروجی از یک‌دیگر و تعمیر و نگهداری کمتر می‌باشند. داشتن یک مدل بر مبنای مدار معادل مغناطیسی در مقایسه با روش المان محدود، می‌تواند زمان مورد نیاز را در مراحل اولیه فرایند طراحی کاهش دهد. در این مقاله مدل‌سازی دو بعدی یک چرخ‌دنده مغناطیسی هم‌محور بر مبنای مدار معادل مغناطیسی و با استفاده از روش تحلیل گره ارائه شده‌است. با استفاده از مدل ارائه‌شده، ابتدا پتانسیل مغناطیسی گره‌های مدار به‌دست آمده‌است و سپس  با استفاده از آن توزیع میدان‌های مغناطیسی، شارها و گشتاور روتور درونی و بیرونی در بخش‌های مختلف چرخ‌دنده تعیین شده‌است. مدل دینامیکی چرخ‌دنده نیز به کمک مدل ارائه‌شده استخراج شده‌است و  مشخصه گشتاور-زوایه، ریپل گشتاور و گشتاور شکست چرخ‌دنده به‌دست آمده‌است. علاوه بر این، تاثیر تغییرات گشتاور بار برروی دینامیک چرخ‌دنده مورد ارزیابی قرار گرفته‌است. درنهایت به‌منظور اعتبارسنجی مدل پیشنهادی، نتایج به‌دست‌آمده با نتایج روش تحلیل المان محدود مقایسه شده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Dynamic modeling of coaxial magnetic gears based on magnetic equivalent circuit using nodal analysis method

نویسندگان [English]

  • A. Khodakarami 1
  • H. Feshki Farahani 2
  • M. Hosseini Aliabadi 3
1 Faculty of Electrical Engineering, Islamic Azad University of Shahr-e-Qods, Shahr-e-Qods, Iran
2 Department of Electrical Engineering, Islamic Azad University Ashtian, Ashtian, Iran
3 Department of Electrical Engineering, Islamic Azad University of Central Tehran Branch, Tehran, Iran
چکیده [English]

Magnetic gears in comparison with mechanical type have a lot of features like high reliability, low vibration and acoustic noise, overload protection, input and output shafts insulation, and less repair and maintenance requirements. Having a semi-analytic model based on the magnetic equivalent circuit (MEC) compared with the finite element method can reduce the time needed in the preliminary stages of the design process. In this paper, a two-dimensional modeling of a coaxial magnetic gearbox based on a MEC is presented using the nodal analysis method. Using the proposed model, the magnetic potentials of the circuit nodes are first obtained and the magnetic field distribution, fluxes, inner and outer rotor torque are determined in different parts of the gear. In this modeling, a dynamical model of the gear is presented. Using this model, the torque-angle characteristic, torque ripple and pullout torque of the gear are extracted. In addition, the effect of the load torque variation on the MG dynamics is evaluated. Finally, in order to validate the proposed model, the model results are compared with the finite element analysis.

کلیدواژه‌ها [English]

  • Coaxial magnetic gear
  • magnetic equivalent circuit
  • inner and outer rotors
  • pole pieces
  • pullout torque
[1]     J. Rens, R. Clark, S. Calverley, K. Atallah, and D. Howe, “Design, analysis and realization of a novel magnetic harmonic gear,” in 2008 18th International Conference on Electrical Machines, 2008, pp. 1-4.
[2]     D. H. K.Attaallah, J. Rens, and, S.Calverly, “a novel magnetic harmonic gear,” IEEE Transactions on Industry Applications Superconductivity, vol. 46, no. 1, pp. 206-212, 2010.
[3]     K. Atallah, S. D. Calverley, and D. Howe, “High-performance magnetic gears,” Journal of Magnetism and Magnetic Materials, vol. 272-276, no. Supplement, pp. E1727-E1729, 2004.
[4]     X. L. Xiaoxu Zhang , Chao Wang and Zhe Chen, “Analysis and design optimization of a coaxial surface-mounted permanent-magnet magnetic gear,” energies, vol. 7, no. 12, pp. 8535-8553, 2014.
[5]     Y. F. Xin Yin, Xiaoyan Huang, “Analytical modeling of a novel vernier pseudo-direct-drive permanent-magnet machine,” IEEE Transactions on Magnetics vol. 53, no. 6, 2017.
[6]     S. P. G. Muruganandam, and P. Selvakumar, “Design and implementation of a novel magnetic bevel gear,” Control Engineering and Applied Informatics, vol. 15, no. 2, pp. 30–37, 2013.
[7]     Y. Liu, S. L. Ho, and W. N. Fu, “A Novel Magnetic Gear With Intersecting Axes,” IEEE Transactions on Magnetics, vol. 50, no. 11, pp. 1-4, 2014.
[8]     S. Gerber, “Evaluation and design aspects of magnetic gears and magnetically geared electrical machines,” Department of Electrical and Electronic Engineering Faculty of Engineering, Stellenbosch University, 2015.
[9]     P. M. Tlali, R. J. Wang, and S. Gerber, “Magnetic gear technologies: A review,” in 2014 International Conference on Electrical Machines (ICEM), 2014, pp. 544-550.
[10]   Y. D. Yao, D. R. Huang, C. M. Lee, S. J. Wang, D. Y. Chiang, and T. F. Ying, “Magnetic coupling studies between radial magnetic gears,” IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 4236-4238, 1997.
[11]   Y. D. Yao, D. R. Huang, C. C. Hsieh, D. Y. Chiang, and S. J. Wang, “Simulation study of the magnetic coupling between radial magnetic gears,” IEEE Transactions on Magnetics, vol. 33, no. 2, pp. 2203-2206, 1997.
[12]   S. Kikuchi and K. Tsurumoto, “Design and characteristics of a new magnetic worm gear using permanent magnet,” IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 2923-2925, 1993.
[13]   S. Kikuchi and K. Tsurumoto, “Trial construction of a new magnetic skew gear using permanent magnet,” IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4767-4769, 1994.
[14]   J. Rens and K. Atallah, “A novel magnetic harmonic gear,” Electric Machines & Drives Conference, 2007. IEMDC '07. IEEE International, pp. 3-8, 2007.
[15]   K. Davey, L. McDonald, and T. Hutson, “Axial flux cycloidal magnetic gears,” IEEE Transactions on Magnetics, vol. 50, no. 4, 2014.
[16]   Y. Chen and F. Weinong, “A novel hybrid-flux magnetic gear and its performance analysis using the 3-D finite element method,” Energies, vol. 8, no. 5, pp. 3313-3327, 2015.
[17]   M. Chen, K.-t. Chau, C. H. T. Lee, and C. Liu, “Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets,” Progress In Electromagnetics Research, vol. 153, no. October, pp. 23-32, 2015.
[18]   K. Atallah and D. Howe, “A novel high-performance magnetic gear,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 2844-2846, 2001.
[19]   L. Jian and K. T. Chau, “A coaxial magnetic gear with halbach permanent-magnet arrays,” IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 319-328, 2010.
[20]   L. Jian, K. T. Chau, Y. Gong, J. Z. Jiang, C. Yu, and W. Li, “Comparison of coaxial magnetic gears with different topologies,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4526-4529, 2009.
[21]   H. Y. Li, H. Hao, M. J. Jin, and J. X. Shen, “Analytical calculation of magnetic field distribution in magnetic gears with consequent-pole rotors by subdomain method,” 2016 IEEE Vehicle Power and Propulsion Conference, VPPC 2016 - Proceedings, pp. 24-29, 2016.
[22]   J. X. Shen, H. Y. Li, H. Hao, and M. J. Jin, “A coaxial magnetic gear with consequent-pole rotors,” IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 267-275, 2017.
[23]   J. X. Shen, H. Y. Li, H. Hao, M. J. Jin, and Y. C. Wang, “Topologies and performance study of a variety of coaxial magnetic gears,” IET Electric Power Applications, vol. 11, no. 7, pp. 1160-1168, 2017.
[24]   H. M. Shin and J. H. Chang, “Analytical magnetic field calculation of coaxial magnetic gear with flux concentrating rotor,” IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-4, 2016.
[25]   T. Lubin, S. Mezani, and A. Rezzoug, “Analytical computation of the magnetic field distribution in a magnetic gear,” IEEE Transactions on Magnetics, vol. 46, no. 7, pp. 2611-2621, 2010.
[26]   Y.-J. Ge, C.-Y. Nie, and Q. Xin, “A three dimensional analytical calculation of the air-gap magnetic field and torque of coaxial magnetic gears,” Progress In Electromagnetics Research, vol. 131, pp. 391-407, 2012.
[27]   B. Dianati, H. Heydari, and S. A. Afsari, “Analytical computation of air-gap magnetic field in a viable superconductive magnetic gear,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 6, pp. 1-12, 2016.
[28]   C.-T. Liu, K.-Y. Hung, and C.-C. Hwang, “Developments of an efficient analytical scheme for optimal composition designs of tubular linear magnetic-geared machines,” IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-4, 2016.
[29]   M. Desvaux, B. Traullé, R. L. G. Latimier, S. Sire, B. Multon, and H. B. Ahmed, “Computation time analysis of the magnetic gear analytical model,” IEEE Transactions on Magnetics, vol. 53, no. 5, pp. 1-9, 2017.
[30]   A. Rahideh, A. A. Vahaj, M. Mardaneh, and T. Lubin, “Two-dimensional analytical investigation of the parameters and the effects of magnetisation patterns on the performance of coaxial magnetic gears,” IET Electrical Systems in Transportation, vol. 7, no. 3, pp. 230-245, 2017.
[31]   A. S. Abdel-Khalik, A. S. Elshebeny, and S. Ahmed, “Design and evaluation of a magnetic planetary gearbox for compact harsh environments,” SPEEDAM 2010 - International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 1178-1182, 2010.
[32]   H. N.Niguchi and K. Howe, “Transmission Torque analysis of a novel magnetic planetary gear employing 3-D FEM” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 1043-1046, 2012.
[33]   S. Peng, W. N. Fu, and S. L. Ho, “A novel triple-permanent-magnet-excited hybrid-flux magnetic gear and its design method using 3-D finite element method,” IEEE Transactions on Magnetics, vol. 50, no. 11, pp. 3313-3327, 2014.
[34]   K. Nakamura, M. Fukuoka, and O. Ichinokura, “Performance improvement of magnetic gear and efficiency comparison with conventional mechanical gear,” Journal of Applied Physics, vol. 115, no. 17, pp. 50-53, 2014.
[35]   N. Niguchi, K. Hirata, M. Muramatsu, and Y. Hayakawa, “Eddy current analysis of magnetic gear employing 3-D FEM,” Electromagnetic Field Computation (CEFC), 2010 14th Biennial IEEE Conference on, vol. 540, no. 2009, pp. 1-1, 2010.
[36]   M. Fukuoka, K. Nakamura, and O. Ichinokura, “Dynamic analysis of planetary-type magnetic gear based on reluctance network analysis,” IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 2414-2417, 2011.
[37]   M. Fukuoka, K. Nakamura, and O. Ichinokura, “RNA-based optimum design method for spm type magnetic gears,” Journal of the Magnetics Society of Japan, vol. 37, no. 3-2, pp. 264-267, 2013.
[38]   Y.-C. Wu and B.-S. Jian, “Magnetic field analysis of a coaxial magnetic gear mechanism by two-dimensional equivalent magnetic circuit network method and finite-element method,” Applied Mathematical Modelling, vol. 39, no. 19, pp. 5746-5758, 2015.
[39]   M. Johnson, M. C. Gardner, and H. A. Toliyat, “A parameterized linear magnetic equivalent circuit for analysis and design of radial flux magnetic gears—Part I: Implementation,” IEEE Transactions on Energy Conversion, vol. 33, no. 12, pp. 784-791, 2017.
 [40]  D. Han and J. H. Chang, “Design of electromagnetic linear actuator using the equivalent magnetic circuit method,” IEEE Transactions on Magnetics, vol. 52, no. 3, pp. 1-4, 2016.
[41]   P. Naderi and A. Shiri, “Modeling of ladder-secondary-linear induction machine using magnetic equivalent circuit,” IEEE Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11411-11419, 2018.
 [42]  F. Abolqasemi-Kharanaq, R. Alipour-Sarabi, Z. Nasiri-Gheidari, and F. Tootoonchian, “Magnetic equivalent circuit model for wound rotor resolver without rotary transformer’s core,” IEEE Sensors Journal,  vol. 18, no. 21, pp. 8693-8700, 2018.
[43]   P. Ojaghlu, A. Vahedi, and F. Totoonchian, “Magnetic equivalent circuit modelling of ring winding axial flux machine,” IET Electric Power Applications, vol. 12, no. 3, pp. 293-300, 2017.
[44]   J.-H. Sim, D.-G. Ahn, D.-Y. Kim, and J. P. Hong, “Three-Dimensional equivalent magnetic circuit network method for precise and fast analysis of PM-assisted claw-pole synchronous motor,” IEEE Transactions on Industry Applications,  vol. 54, no. 1, pp. 160-171, 2018.
[45]   ن. پیمان, «مدل‌سازی ماشین القایی روتور سیم‌پیچی شده با اثر اشباع از طریق مدارمعادل مغناطیسی تعمیم‌یافته» , مجله مهندسی برق تبریز، جلد 47، شماره 4، صفحه 1743-1733، زمستان 1396.
[46]   J. Bao, B. Gysen, and E. A. Lomonova, “Hybrid analytical modeling of saturated linear and rotary electrical machines: integration of fourier modeling and magnetic equivalent circuits,” IEEE Transactions on Magnetics,  no. 99, pp. 1-5, 2018.
[47]   م. دولتشاهی, س. م. سقائیان نژاد, J. W. Ahn و م. معلم، «کاهش نوسانات گشتاور و تلفات اهمی در موتور سوئیچ رلوکتانس با در نظر گرفتن اثر اشباع مغناطیسی» ، مجله مهندسی برق تبریز، جلد 44، شماره 2، صفحه 21-11، تابستان 1393.
 [48]  M. Cheng, K. Chau, C. Chan, E. Zhou, and X. M. Huang, “Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors,” IEEE Transactions on Magnetics,  vol. 36, no. 1, pp. 339-348, 2000.
[49]   R. Ghanaee, A. Darabi, A. Kioumarsi, R. M. Baghayipour, and J. M. Morshed, “A nonlinear equivalent circuit model for flux density calculation of a permanent magnet linear synchronous motor,” Serbian Journal of Electrical Engineering , vol. 12, no. 3, pp. 359-373, 2015.
[50]   D. C. Hanselman, Brushless permanent magnet motor design. The Writers' Collective, 2003.
[51]   M. Rahimi, M. Durali, and M. Asghari, “A design approach to coaxial magnetic gear and determination of torque capability,” Scientia Iranica B, vol. 25, no. 2, pp. 772-789, 2018.
[52]   S. Mallampalli and V. Rallabandi, “Parametric study of magnetic gear for maximum torque transmission,” in 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), 2014, pp. 1-5.