[1] C. Thangaraj, R. Pownall, P. Nikkel, G. Yuan, K. L. Lear, and T. Chen, “Fully CMOS-compatible on-chip optical clock distribution and recovery,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 18, no. 10, pp. 1385-1398, 2010.
[2] J. Warnock, B. Curran, J. Badar, G. Fredeman, D. Plass, Y. Chan, S. Carey, G. Salem, F. Schroeder, and F. Malgioglio, "4.1 22nm Next-generation IBM System z microprocessor.", Solid-State Circuits Conference-(ISSCC), pp. 1-3, 2015.
[3] N. H. E. Weste, and D. Harris, " Sequential Circuit Design," CMOS VLSI design: A circuits and systems perspectives, Boston: Addison Wesley, 2005.
[4] B. Ackland, B. Razavi, and L. West, "A comparison of electrical and optical clock networks in nanometer technologies", Custom Integrated Circuits Conference, pp. 779-782, 2005.
[5] C. Debaes, A. Bhatnagar, D. Agarwal, R. Chen, G. A. Keeler, N. C. Helman, H. Thienpont, and D. A. Miller, “Receiver-less optical clock injection for clock distribution networks,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 9, no. 2, pp. 400-409, 2003.
[6] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and K. Yazawa, "The design and implementation of a first-generation CELL processor - a multi-core SoC.", Digest of Technical Papers. ISSCC,pp. 49-52, 2005.
[7] P. Mahoney, E. Fetzer, B. Doyle, and S. Naffziger, "Clock distribution on a dual-core, multi-threaded Itanium®-family processor.", Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC, pp. 292-599, 2005.
[8] C. C. Tsai, C. C. Kuo, F. T. Hsu, L. J. Gu, and T. Y. Lee, "X-architecture zero-skew clock tree construction with performance and DFM considerations.", SoC Design Conference (ISOCC), 2010 International, pp. 294-297, 2010.
[9] W. K. Loo, K. S. Tan, and Y. K. Teh, "A study and design of CMOS H-Tree clock distribution network in system-on-chip.", ASIC, 2009. ASICON'09. IEEE 8th International Conference, pp. 411-414, 2009.
[10] C. Hongyu, C. Chung-Kuan, A. B. Kahng, I. I. Mandoiu, W. Qinke, and Y. Bo, “The Y architecture for on-chip interconnect: analysis and methodology,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 4, pp. 588-599, 2005.
[11] A. V. Mule, E. N. Glytsis, T. K. Gaylord, and J. D. Meindl, “Electrical and optical clock distribution networks for gigascale microprocessors,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 10, no. 5, pp. 582-594, 2002.
[12] C. Favi, T. Kluter, C. Mester, and E. Charbon, “Optically-clocked instruction set extensions for high efficiency embedded processors,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59, no. 3, pp. 604-615, 2012.
[13] Y. Zhang, X. Xu, D. Kwong, J. Covey, A. Hosseini, and R. T. Chen, “0.88-THz Optical Clock Distribution on Adhesively Bonded Silicon Nanomembrane,” Photonics Technology Letters, IEEE, vol. 26, no. 23, pp. 2376-2379, 2014.
[14] B. Krueger ,R. E. Makon, O. Landolt ,O. Hidri, T. Schweiger, E. Krune, D. Knoll, S. Lischke, and J. Schulze. “A monolithically integrated, optically clocked 10 GS/s sampler with a bandwidth of> 30 GHz and a jitter of< 30 fs in photonic SiGe BiCMOS technology.“ IEEE Custom Integrated Circuits Conference (CICC), pp. 1-4, IEEE, 2017.
[15] C. Favi, “Single-photon techniques for standard CMOS digital ICs,” PhD thesis, EPFL, 2011.
[16] M. A. Karami, “Deep-submicron CMOS single photon detectors and quantum effects,” PhD thesis, TU Delft, Delft University of Technology, 2011.
[17] M. J. Lee, M. R. Ximenes, P. Padmanabhan, T. J. Wang, K. C. Huang, Y. Yamashita, D. N. Yaung, and E. Charbon, “A back illuminated 3D- stacked single-photon avalanche diode in 45nm CMOS technology”, IEEE Electron Device Meeting (IEDM), pp. 6-16, 2017.
[18] T. C. de Albuquerque, F. Calmon, R. Clerc, P. Pittet, Y. Benhammou, D. Golanski, S. Juan, D. Rideau, A. Cathelin, “Integration of SPAD in 28nm FDSOI CMOS technology”, 48th European solid-state device research conference (ESSDERC), 2018.
[19] D. Mora, A. Tosi, S. Tisa, and F. Zappa, “Single-photon avalanche diode model for circuit simulations,” Photonics Technology Letters, IEEE, vol. 19, no. 23, pp. 1922-1924, 2007.
[20] D. Palubiak, M. M. El-Desouki, O. Marinov, M. J. Deen, and Q. Fang, “High-speed, single-photon avalanche-photodiode imager for biomedical applications,” Sensors Journal, IEEE, vol. 11, no. 10, pp. 2401-2412, 2011.
[21] M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, "A novel quenching circuit to reduce afterpulsing of single photon avalanche diodes.", Quantum Sensing and Nanophotonic Devices, pp. 69001F, 2009.
[22] M. A. Wayne, A. Restelli, J. C. Bienfang, and P. G. Kwiat, “Afterpulse Reduction Through Prompt Quenching in Silicon Reach-Through Single-Photon Avalanche Diodes,” Journal of Lightwave Technology, vol. 32, no. 21, pp. 3495-3501, 2014.
[23] A. Gallivanoni, I. Rech, and M. Ghioni, “Progress in quenching circuits for single photon avalanche diodes,” IEEE Transactions on Nuclear Science, vol. 57, no. 6, pp. 3815-3826, 2010.
[24] C. Niclass, and M. Soga, "A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18µm CMOS technology”, Electron Devices Meeting (IEDM), 2010.
[25] D. Bronzi, S. Tisa, F. Villa, S. Bellisai, A. Tosi, and F. Zappa, “Fast sensing and quenching of CMOS SPADs for minimal afterpulsing effects,” IEEE Photonics Technology Letters, vol. 25, no. 8, pp. 776-779, 2013.
[26] M. Gronholm, J. Poikonen, and M. Laiho, "A ring-oscillator-based active quenching and active recharge circuit for single photon avalanche diodes.", European conference, Circuit Theory and Design ECCTD, pp. 5-8, 2009.
[27] محمد عظیم کرمی، میثاق انصاریان و سوده عقلی مقدم، "نوسان ساز حلقوی جدید کنترل شده با ولتاژ با استفاده از اثر میلر"، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 1 صفحه 221-228، 1396.
[28] C. S. U. s. Manual, “Cadence design systems,” San Jose, CA, 1994.
[29] خلیل منفردی و یوسف بلقیس آذر "تقویت کننده کسکود تمام تفاضلی بازیابی تا شده بهبود یافته ولتاژو توان پایین"، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 1 صفحه 328-334و 1397.
[30] V. S. Sathe, S. Arekapudi, A. Ishii, C. Ouyang, M. C. Papaefthymiou, and S. Naffziger, “Resonant-clock design for a power-efficient, high-volume x86-64 microprocessor,” Solid-State Circuits, IEEE Journal of, vol. 48, no. 1, pp. 140-149, 2013.
[31] P. Restle, D. Shan, D. Hogenmiller, Y. Kim, A. Drake, J. Hibbeler, T. Bucelot, G. Still, K. Jenkins, and J. Friedrich, " Wide-frequency-range resonant clock with on-the-fly mode changing for the POWER8 TM microprocessor.”, Solid-State Circuits Conference Digest of Technical Papers, pp. 100-101, 2014.
[32] S. Rusu, H. Muljono, D. Ayers, S. Tam, W. Chen, A. Martin, S. Li, S. Vora, R. Varada, and E. Wang, " A 22nm 15-core enterprise Xeon® processor family.” Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 102-103, 2014.
[33] J. Stinson, and S. Rusu, " Stinson J, Rusu S. A 1.5 GHz third generation itanium® 2 processor”. Proceedings of the 40th annual Design Automation Conference, ", vol.1, pp. 706-709, 2003.
[34] S. Rusu, and S. Tam, " Clock generation and distribution for the first IA-64 microprocessor.”, IEEE Journal of Solid-State Circuits, Vol. 35, no.1, pp. 1545-1552, 2000.