سوئیچ شتاب قابل تنظیم با استفاده از دو نوع تحریک بر اساس تکنولوژی ممز

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه ارومیه

2 دانشکده فنی و مهندسی - دانشگاه ارومیه

چکیده

در این مقاله طراحی و شبیه‌سازی ساختار جدیدی از سوئیچ میکرو ماشینی عمل‌کننده با شتاب، با قابلیت تنظیم برای شتاب موردنظر ارائه شده است. با استفاده از سوئیچ پیشنهادی امکان سنجش شتابدر محدوده بین میلی جی (g) الی نود جی میسر گردیده است. جهت تنظیم شتاب موردنظر در بازه ذکر شده از دو تحریک الکترواستاتیک شانه‌ای و پیزوالکتریک استفاده شده است. از تحریک الکترواستاتیک شانه‌ای، به علت رنج خطی بالای آن و تحریک پیزوالکتریک به علت دقت بالای تنظیم سوئیچ در شتاب‌های خیلی کم و عدم وجود پدیده پایین کش (pull in) بهره برده شده است. در ساختار پیشنهادی جهت جلوگیری از پدیده پایین کش از متوقف کننده در تحریک الکترواستاتیک استفاده شده است. در بخش تحریک پیزوالکتریک معادلات حاکم بر جابجایی ناشی از تحریک پیزوالکتریک استخراج شده است. بر اساس طراحی انجام‌گرفته رزولوشن ساختار حدود ۱۵/۰ جی است. ولتاژ آستانه پایین کش برای تحریک الکترواستاتیک شانه‌ای ۵۰ ولت و حداکثر ولتاژ تنظیم تحریک پیزوالکتریک ۸۵ ولت است. ساختار پیشنهادی بر اساس محاسبات انجام‌گرفته در نرم‌افزار اینتلیسویت (intellisuite) شبیه‌سازی شده و نمودارهای حاصل از شبیه‌سازی جهت صحت سنجی با نمودارهای حاصل از متلب مقایسه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

MEMS Based Tunable Acceleration Switch Using Two Type Actuators

نویسندگان [English]

  • L. Moloudzade 1
  • S. Afrang 1
  • Gh. Rezazadeh 2
1 Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran
2 Faculty of Engineering, Urmia University, Urmia, Iran
چکیده [English]

: In this paper design and simulation of a new tunable acceleration MEMS switch is proposed. Using the proposed switch, it is possible to measure the accelerations in the range between milli-g and 90g. To tune the desired acceleration switching, two actuators are used. These actuators are electrostatic comb drive and piezoelectric actuator. The electrostatic comb drive actuator operates in high linear range and the piezoelectric actuator can measure very low accelerations without pull in phenomenon. In the structure, the stopper is used to avoid pull in phenomenon due to the electrostatic actuation. In the piezoelectric actuator section, the governing equations for the deflection due to piezoelectric actuation is extracted. Based on design, the resolution is about 0.15g. The pull in voltage of electrostatic comb drive actuator is 50 volt and maximum voltage tuning of piezoelectric actuator is 85 volt. To verify, the proposed structure is first calculated using matlab software and then simulated using intellisuite software.

کلیدواژه‌ها [English]

  • Acceleration switch
  • MEMS
  • piezoelectric actuator
  • electrostatic actuator
  • tune
  • pull in
[1]      W. D. Frobenius, S. A. Zeitman, M. H. White, D. D. O'Sullivan, and R. G. Hamel, "Microminiature ganged threshold accelerometers compatible with integrated circuit technology," Electron Devices, IEEE Transactions on, vol. 19, pp. 37-40,1972.
[2]      J. Sang Go,Y. Ho Cho and K. Park, "Snapping microswitches with adjustable acceleration threshold," Sensors and Actuators A: 54, pp. 579-583, 1996.
[3]      X. Zhanwen, Z. Ping, N. Weirong, D. Liqun and C. Yun, “A novel MEMS omnidirectional inertial switch with flexible electrodes,” Sensors and Actuators A: Physical, 212, pp.93-101,  2014.
[4]      J.Zhao, J. Jia and G.Chen, “A novel MEMS parallel-beam acceleration switch,” In Mechatronic and Embedded Systems and Applications, Proceedings of the 2nd IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, pp. 1-5, Beijing, China, 2006.
[5]      J.S. Go, Y.H. Cho, and B.M. Kwak, “Acceleration microswitches with adjustable snapping threshold,” Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95, vol. 2, pp. 691-694, Stockholm, Sweden, 1995.
[6]      Z. Yang, G. Ding, H. Wang, H. Cai and X. Zhao, “Modeling, simulation and characterization of a micromachined acceleration switch with anti-stiction raised strips on the substrate,” IEEE Transactions on Components, Packaging and Manufacturing Technology, 1(8), pp.1195-1204, 2011.
[7]      O.Sidek, M.M. Nawi and M.A. Miskam, “Analysis of low-g capacitive cantilever-mass micro-machined accelerometers,” International Journal of Engineering & Technology IJET-IJENS, 10, p.141, 2010.
[8]      H. Kim, Y. Tang, Y. Kim and J. Kim, "MEMS acceleration switch capable of increasing threshold acceleration." Electronics Lletter, vol. 48, no. 25 pp. 1614-1616, 2012.
[9]      H. Kim, Y. H. Jang, Y. K. Kim and J. M. Kim, “MEMS acceleration switch with bi-directionally tunable threshold,” Sensors and Actuators A: Physical, 208, pp.120-129, 2014.
[10]      V. Kumar, R. Jafari and S. pourkamali, "Ultra-low power digitally operated tunable MEMS accelerometer," IEEE Sensors Journal, vol. 16, pp. 8715 – 8721, 2016.
[11]      Z. Y.Guo, Z. C. Yang, L. T. Lin, Q. C.Zhao, H. T. Ding, X. S. Liu, and G. Z. Yan, “Design, fabrication and characterization of a latching acceleration switch with multi-contacts independent to the proof-mass,” Sensors and Actuators A: physical, 166(2), pp.187-192, 2011.
[12]      S. Liu, Y. Hao, S. Wang and D. Li, “MEMS-based low-g inertial switch,” Sensors & Transducers, 176(8), pp.78, 2014.
[13]      L.J.Currano, M. Yu and B. Balachandran, “Latching in a MEMS shock sensor: Modeling and experiments,” Sensors and Actuators A: Physical, 159(1), pp.41-50, 2010.
[14]      K. Yoo and J. Kim, “A novel configurable MEMS inertial switch using microscale liquid-metal droplet,” IEEE 22nd International Conference on Micro Electro Mechanical Systems
pp. 793-796, 2009.
[15]      W. Chen, Y. Wang, B. Zhu, G. Ding, H. Wang and Z. Yang, " A laterally driven micromechanical inertial switch with a compliant cantilever beam as the stationary electrode for prolonging contact time," J. Micromech. Microeng., vol. 24, no. 6, 065020 (10pp), 2014.
[16]      G. K. Fedder, Simulation of microelectromechanical systems, Ph.D. Thesis, University of California at Berkeley, 1994.
[17]      V. P. Jaeklin, C. Linder, N. F. de Rooij and J. M. Moret, "Micromechanical comb actuators with low driving voltage," J. Micromech. Microeng., vol. 2, no. 4, pp. 250-255, 1992.
[18]      W. C. Young and R. G. Budynas, Roark's formulas for stress and strain, New York: McGraw-Hill, 2002. 
[19]      G. Klaasse, R. Puers and H. A. C. Tilmans, "Piezoelectric versus electrostatic actuation for a capacitive RF-MEMS switch. Proc. SPIE, pp.631-634, 2002.
[20]      W. Weaver, S. P. Timoshenko, and D. H. Young, Vibration problems in engineering, 5th edition, John Wiley & Sons, New York, 1990.
[21]      M. Bao and H. Yang, "Squeeze film air damping in MEMS," Sensors and Actuators A: Physical, 136, pp.3-27, 2007.
[22]      M. Muralidhar, G. Vijaya, M. S. Krupashankara, B. K. Sridhara, and T. N. Shridhara, "Studies on nanostructure aluminum thin film coatings deposited using DC magnetron sputtering process, " IOP Conf. Series: Materials Science and Engineering, pp. 1-9, 2016.
[23]      Alumiplate, Physical and mechanical properties of high purity electroplated aluminum, https://www.alumiplate.com/coating/properties/.
[24]      J. Molarius, J. Kaitila, T. Pensala and M. Yelilammi, "Piezoelectric ZnO films by r.f. sputtering," Journal of Material Science: Materials in Electronics, 14, pp. 431-435, 2003.
[25]      D. H. Kim, M. W. Kim, J. W. Jeon, K. S. Lim and J. B. Yoon, " Modeling, design, fabrication and demonstration of a digital micromirror with interdigitated cantilevers," Journal of Microelectromechanical Systems, vol. 18, no. 6, pp. 1382-1395, 2009
[26]      علیرضا شمسی، سعید دل آرام فریمانی، احمد عفیفی «استفاده از روش لیتوگرافی نرم جهت ایجاد میکرو ساختارها روی بستر آب‌دوست شده پلیمر PMMA»، مجله مهندسی برق دانشگاه تبریز، شماره 2، دوره 46، صفحه 133-127، 1395.
[27]      نیما طالب‌زاده، مزدک راد ملکشاهی، هادی ولادی، «ارائه روش نوین برای ساخت یک ریز مخلوط گر الکترواسمتیکی با الکترودهایی در دوسمت برای کاربری زیست‌فناوری»، مجله مهندسی برق دانشگاه تبریز، شماره 1، دوره 46، صفحه 265-255، 1395.