طراحی کنترل‌کننده ردیاب خروجی برای سیستم غیرخطی توصیف‌شده با مدل‌های خطی چندوجهی

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی برق - دانشگاه صنعتی امیرکبیر

2 دانشکده مهندسی برق - دانشگاه علم و صنعت ایران

چکیده

در این مقاله به طراحی کنترل‌کننده برای سیستم‌های غیرخطی به روش مدل‌های خطی چندوجهی پرداخته می‌شود. ابتدا مسئله ردیابی خروجی برای حالتی که سیستم نسبت به ورودی افاین باشد، بررسی شده و در ادامه نیز برای حالت غیرافاین مسئله حل شده‌است. با درنظرگرفتن تابع لیاپانوف مربعی برای سیستم بیان‌شده به شکل چندوجهی، مسئله طراحی کنترل‌کننده به‌صورت نامعادله ماتریس دوخطی ظاهر می‌شود. توابع وزنی مدل چندوجهی به شیوه خاصی تعیین می‌شوند تا از تداخل میان نواحی جلوگیری شود و نشان داده می‌شود مسئله طراحی کنترل‌کننده ردیاب با حل یک نامعادله ماتریس خطی صورت می‌گیرد. برای بررسی پایداری و طراحی کنترل‌کننده نیز از شیوه‌ای استفاده شده که هم پایداری مدل تقریبی (چندوجهی) و هم پایداری مدل اصلی (غیرخطی) را تضمین می‌کند. درنهایت، روش‌های ارائه‌شده و نتایج گرفته‌شده برای طراحی خلبان خودکار یک پرنده مافوق صوت الاستیک به‌عنوان سیستم نمونه استفاده شده‌است. چون در این نوع پرنده پس‌خور از همه حالت‌ها ممکن نیست، روش پیشنهادی برای شرایط پس‌خور جزئی توسعه داده می‌شود. نتایج، حاکی از عملکرد مناسب روش ارائه‌شده می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Output Tracking Control Design for Nonlinear Systems Represented by Polytopic Linear Models

نویسندگان [English]

  • R. Rajabi 1
  • S. Shamaghdari 2
  • S. K. Yad'avar Nikravesh 1
1 Faculty of Electrical Engineering, University of AmirKabir, Tehran, Iran
2 Faculty of Electrical Engineering, University of Science & Technology, Tehran, Iran
چکیده [English]

In this paper, modeling, analyzing and controlling nonlinear systems using Polytopic linear models is considered. First, the output tracking problem is investigated for the state of the system as compared to the affine input, and then the problem is solved for the non-affine state. In the state of determining the parameters of each region to increase the problem solving speed we determine the weighted function in a specific manner that prevents interference between the regions and by solving an linear inequality matrix of controller design , in contrast to the past, it is not necessary to solve a bilinear matrix inequality and only by solving a linear one, the controller will be designed. To stability and design of the controller, a method is used to ensure both the stability of the approximate model (polytopic) and the stability of the main model (nonlinear). Finally, the results are taken and the methods proposed are used to  design of an elastic missile  system.

کلیدواژه‌ها [English]

  • Polytopic linear models
  • linear matrix inequality
  • affine and non-affine systems
  • elastic air vehicle
  • partial feedback
[1] M. Leonard, Methods of analytical dynamics, Courier Corporation, 2010.
[2] K. Schmidt, “Optimum mission performance and multivariable flight guidance for airbreathing launch vehicles”. J Guid Contr Dyn, vol. 20, no. 6, pp. 1157–1164, 1997.
[3] Tsourdos, Antonios and A. Brian, “Adaptive flight control design for nonlinear missile. Control Engineering Practice”, vol. 13, no. 3, pp. 373–382, 2005.
[4] A. Das, R. Das, S. Mukhopadhyay & A. Patra, “Sliding mode controller along with Feedback Linearization for a Nonlinear Missile model”, International Symposium on Systems and Control in Aerospace and Astronautics (ISSCAA), vol. 1, pp. 952–956, 2006.
[5] علی‌رضا مدیرروستا و مهدی خدابنده، «طراحی یک روش کنترل مد لغزشی انتگرالی تطبیقی برای پایدارسازی زمان محدود و مقاوم پرنده چهارملخه»، مجله مهندسی برق دانشگاه تبریز، جلد 46، شماره 1، 1396.
[6] O. Rehman, B. Fidan & R. Petersen, “Uncertainty modeling and robust minimax LQR control of multivariable nonlinear systems with application to hypersonic flight”, Asian J Contr, vol. 14, no. 5, pp. 1180–1193, 2012.
[7] H. Li, Z. Sun & H. Min H, “Fuzzy dynamic characteristic modeling and adaptive control of nonlinear systems and its application to hypersonic vehicles”, Sci China Inf Sci, vol. 54, no. 3, pp. 460–468.
[8] Y. Fan, E. M. Cliff, F. H. Lutze, M. R. Anderson, “Mixed H2/ H∞ optimal control for an elastic aircraft”, Journal of guidance, control and dynamics, vol. 19, no. 3, pp. 650–655, 1996.
[9] B. Xu and Shi. Zhongke, “An overview on flight dynamics and control approaches for hypersonic vehicles”, Science China Information Sciences, vol. 58, no. 7, pp. 1–9, 2015.
[10] G. Zames ,“Feedback and optimal sensitivity: model reference transformations, multiplicative semi norms and approximate inverses”, IEEE Trans. Circuits and Systems, vol. 26, no. 2, pp. 301–320, 1981.
[11] M. K. Fan, A. L. Tits & J. C. Doyle, “Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics”, IEEE Trans. Circuits and Systems, , vol. 36, no. 1, pp. 25–38, 1991.
[12] A. C. Bartlett, C. V. Hollot & H. Lin, “Root Location of an entire polytope of polynomials: it suffices to check the edges”, Mathematics of Control, Signals and Systems, vol. 1, no. 1, pp. 61–71, 1988.
[13] S. P. Bhattacharyya, H. Chapellat, L. H. Keel, “Robust control: The parametric approach. prentice hall”, Advances in Control Education 1994, pp. 49-52. 1995.
[14] S. Boyd, L. EL Ghaoui, E. Feron & V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics, Philadelphia. Vol. 15, 1994.
[15] L. Grman, D. RosinovÁ, V. Veselý & A. K. KovÁ, “Robust stability conditions for polytopic systems”, International Journal of Systems Science, vol. 36, no. 15, pp. 961-973, 2005.
[16] محمد مرادی و امیرحسین ابوالمعصومی، «طراحی پایدارساز غیرخطی فازی برای سیستم‌های قدرت دارای تأخیر زمانی»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، 1396.
[17] E. Kim and S. Kim, “Stability analysis and synthesis for an affine fuzzy control system via LMI and ILMI: a continuous case”, IEEE Transactions on Fuzzy Systems, vol. 10, no. 3, pp. 391-400, 2002.
[18] H. J. Lee, J. B. Park and G. Chen, “Robust fuzzy control of nonlinear systems with parametric uncertainties”, IEEE Transactions on fuzzy systems, vol. 9, no. 2, pp. 369-379, 2001.
[19] S. I. Lee, Y. H. Joo & J. B. Park, “Design of Controller for Affine Takagi-Sugeno Fuzzy System with Parametric Uncertainties via BMI”, 제어로봇시스템학회 국제학술대회 논문집, pp. 658-662, 2004.
[20] G. Z. Angelis, System analysis, modelling and control with polytopic linear models, Diss. Technische Universiteit Eindhoven, 2001.
[21] حسن زهره‌وند، سید کمال‌الدین یادآور نیکروش و سعید شمقدری،     «پایدارسازی و تنظیم خروجی سیستم غیرخطی با مدل چندوجهی»، کنگره سراسری فناوری­های نوین ایران با هدف دست­یابی به توسعه پایدار، دوره نخست، 8، تهران، 1393.
[22] افروز ناصری و محمدحسن آسمانی، «کنترل‌کننده مبتنی بر رؤیتگر در سیستم‌های فازی T-S با متغیرهای مقدم قواعد نامعلوم در حضور اشباع ورودی»، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 1، 1397.
[23] H. Hashemi & S. Shamaghdari, “Investigating Observability in Generalized Coordinates for a Nonlinear Elastic Flight Vehicle”, a a, pp. 21-22, 2014.
[24] ناصری و محمدحسن آسمانی، «طراحی کنترل‌کننده پیش‌بین مقاوم با استفاده از نامساوی‌های ماتریس خطی برای سیستم کنترل وضعیت ماهواره»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 4، 1393.
[25] S. Shamaghdari, S. K. Y. Nikravesh, & M. Haeri, “Integrated guidance and control of elastic flight vehicle based on robust MPC”, International Journal of Robust and Nonlinear Control, vol. 25, no. 15, pp. 2608–2630, 2015.
[26] S. Shamaghdari & S. K. Y. Nikravesh, “A nonlinear stability analysis of elastic flight vehicle”, Aircraft Engineering and Aerospace Technology, vol. 84, no. 6, pp. 404–412, 2012.
[27] S. O. Afzali, & A. Moarefianpor, “Design nonlinear controller H∞ static output feedback over channel flying body of elastic effect: iterative sum of square method ISOS”, 2013.