شبیه‌سازی مدار تست ضربه ترانسفورماتور و بهینه‌سازی پارامترهای ژنراتور ضربه با الگوریتم ژنتیک

نوع مقاله : علمی-پژوهشی

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه زنجان

چکیده

برخورد صاعقه به سیستم­های قدرت موجب ایجاد اضافه ولتاژهای گذرایی با دامنه زیاد و مدت‌زمان بسیار کوتاه درآن­ها می­شود که به ولتاژ ضربه صاعقه موسوم هستند. در آزمایشگاه­های کنترل کیفی کارخانجات سازنده ترانسفورماتور جهت اطمینان از کیفیت سیستم عایقی ترانسفورماتور در تحمل چنین ولتاژهایی، به کمک یک ژنراتور ضربه ولتاژهایی با شکل موج مشابه تولید کرده و به ترانسفورماتور اعمال می­کنند. با توجه به نقش تعیین‌کننده‌ پاسخ فرکانسی ترانسفورماتور در شکل موج تولیدشده توسط ژنراتور ضربه و همچنین متفاوت بودن پاسخ فرکانسی ترانسفورماتورهایی با طراحی­های مختلف، یکی از چالش­های مهم، تولید شکل موج ضربه استاندارد مطابق با الزامات قید شده در استاندارد IEC60060-1 می­باشد. در آزمایشگاه­های فشارقوی معمولاً با تغییر تجربی مقادیر مقاومت­های سری و موازی ژنراتور ضربه و دیگر پارامترهای آن، به شکل موج ضربه استاندارد دست‌ می­یابند. با این وجود در برخی از ترانسفورماتورهای خاص به کمک این رویه تجربی که همراه با سعی و خطا بوده و زمان­بر است، شکل موج ضربه استاندارد بدست نمی­آید.  برای حل این مشکلات، در این مقاله یک روش مدل‌سازی دقیق برای مدار تست ضربه ترانسفورماتور ارائه شده و مقادیر بهینه مقاومت­های ژنراتور ضربه توسط الگوریتم ژنتیک تعیین شده­اند. سپس نتایج مدل‌سازی به کمک تست­های تجربی مورد اعتبارسنجی قرار گرفته است.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Transformer Impulse Test Circuit and Optimization of Impulse Generator Setup Using Genetic Algorithm

نویسندگان [English]

  • A. A Aghaie
  • H. R Mirzaei
- Faculty of Engineering, University of Zanjan, Zanjan, Iran
چکیده [English]

The lightning strikes create fast and high amplitude transient over-voltages in power systems which are called lightning impulse voltages. To ensure the quality of the insulation system of the transformer to deal with such over-voltages, at quality control high voltage test fields of manufacturers, similar voltages are produced by an Impulse Generator and applied to the transformer. Since frequency response of the transformer has a decisive role in the generated voltage waveform and given that the frequency responses of transformers with different designs are different, a main challenge in this field is to produce an impulse waveform with specifications specified in IEC60060-1. In high voltage test fields using an empirical method, the parameters of the impulse generator such as series and parallel resistors are set to achieve a standard impulse wave shape. This try and error empirical method is time consuming and besides, the standard wave shape cannot be achieved in some special design transformers. To overcome these problems, a precise simulation method for transformer impulse test circuit is provided in this paper and the genetic algorithm is adopted to determine the optimum values of impulse generator resistors. Finally, the simulation results are validated using the experimental works.

کلیدواژه‌ها [English]

  • Lightning Impulse Voltage
  • Impulse Generator
  • Transformer
  • Standard waveform
  • Genetic Algorithm
[1]      Kuffel, John, and Peter Kuffel. High voltage engineering fundamentals, Newnes, 2000.
[2]      Lucas, J. Rohan. High voltage engineeringSry Lanka (2001).
[3]      IEEE Standard C57.12.90. Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers, 2015.
[4]      Standard, IEC 60076-3.  Power transformers - Part 3: Insulation levels, dielectric tests and external clearances in air, 2013.
[5]      Standard, IEC 60060-1. High-voltage test techniques - Part 1: General definitions and test requirements, 2010.
[6]      Okabe, Shigemitsu, et al. “Discussion on standard waveform in the lightning impulse voltage test,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 20, no. 1,  pp. 147-156, 2013.
[7]      سجاد باقری، زهرا مروج، گئورک قره­پتیان، "تمایز میان عیوب مکانیکی سیم‌پیچ، خطاهای الکتریکی داخلی و خارجی و جریان‌های هجومی در ترانسفورماتورها با استفاده از روش ترکیبی،" مجله مهندسی برق دانشگاه تبریز، شماره 4، جلد 47 ، در حال انتشار، ایران، 1396.
[8]      بهرام نوشاد، مرتض رزاز، قدرت­اله سیف­السادات، "تعیین یک مدل دقیق ترانسفورماتور جریان برای آنالیز حالت‌های گذرای الکترومغناطیسی در طی خطاهای الکتریکی،" مجله مهندسی برق دانشگاه تبریز، شماره 2، جلد 41 ، صفحه 77-87، ایران، 1390
[9]      Pramanik, Saurav, and L. Satish. “Estimation of series capacitance of a transformer winding based on frequency-response data: An indirect measurement approach,” IEEE Transactions on Power Delivery, vol. 26, no. 4 , pp. 2870-2878, 2011.
[10]      Li, Yan, et al. “Calculation of capacitance and inductance parameters based on FEM in high-voltage transformer winding,” IEEE International Conference on Electrical Machines and Systems (ICEMS), 2011.
[11]      Dalessandro, Luca, Fabiana da Silveira Cavalcante, and Johann W. Kolar. “Self-capacitance of high-voltage transformers,” IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 2081-2092, 2007.
[12]      Alharbi, Hosam Salem. Power transformer transient modeling using frequency response analysis, University of Manitoba (Canada), 2014.
[13]      Martinez, Juan A., and Bruce A. Mork. “Transformer modeling for low-and mid-frequency transients-a review,” IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1625-1632, 2005.
[14]      Gustavsen, Bjorn, and Christoph Heitz. “Rational modeling of multiport systems by modal vector fitting,” IEEE Workshop on Signal Propagation on Interconnects, SPI, 2007.
[15]      DeJean, Gerald R., and Manos M. Tentzeris. “The application of lumped element equivalent circuits approach to the design of single-port microstrip antennas,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 9, pp. 2468-2472, 2007.
[16]      Gustavsen, Bjørn. “Fast passivity enforcement for pole-residue models by perturbation of residue matrix eigenvalues,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 2278-2285, 2008.
[17]      Ramirez, Abner. “Vector fitting-based calculation of frequency-dependent network equivalents by frequency partitioning and model-order reduction,” IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 410-415, 2009
[18]      Antonini, Giulio. “SPICE equivalent circuits of frequency-domain responses.” IEEE Transactions on Electromagnetic Compatibility, vol. 45, no. 3, pp.502-512, 2003.
[19]      Kasun Samarawickrama, Nathan D. Jacob, Aniruddha M. cole, and Behzad Kordi, “Impulse Generator Optimum Setup for Transient Testing of Transformers Using Frequency-Response Analysis and Genetic Algorithm”, IEEE Transaction on Power Delivery, vol. 30, no. 4, pp. 1949-1957, 2015,
[20]      Sofian, Dahlina M., Z. D. Wang, and P. Jarman. “Interpretation of transformer FRA measurement results using winding equivalent circuit modelling technique,” IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, 2005.
[21]      A. KRAETGE, et al. “Aspects of the Practical Application of Sweep Frequency Response Analysis (SFRA) on Power Transformers,” Cigre 6'th Southern Africa Regional Conference, 2009.
[22]      Jayasinghe, J. A. S. B., et al. “Winding movement in power transformers: a comparison of FRA measurement connection methods,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 13, no. 6, 2006.
[23]      Donald, F. “Frequency Response analysis (FRA) for diagnosis of power transformers,” IEEE International Conference on Electrical Engineering Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010.
[24]      Standard, IEC 60076-18. Power transformers - Part 18: Measurement of frequency response, 2018.
[25]      Drmac, Zlatko, Serkan Gugercin, and C. Beattie. “Quadrature-based vector fitting for discretized H_2 approximation,” SIAM Journal on Scientific Computing, vol. 37, no. 2, pp. A625-A652, 2015.
Haupt, Randy L., and Sue Ellen Haupt. Practical genetic algorithms, John Wiley & Sons, 2004.