برنامه‌ریزی بهینه انرژی و ذخیره یک ریزشبکه جزیره‌ای با درنظرگرفتن بارهای پاسخ‌گو و قیود امنیتی

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه بیرجند

چکیده

در این مقاله، یک مدل احتمالاتی برای برنامه‌ریزی هم‌زمان انرژی و ذخیره )چرخان و غیرچرخان( یک ریزشبکه جزیره‌ای با درنظرگرفتن برنامه‌های پاسخ‌گویی بار و قیود امنیتی پیشنهاد شده ‌است. هدف مسئله شامل بیشینه‌کردن سود بهره‌بردار ریزشبکه با درنظرگرفتن قیود امنیتی ولتاژ و فرکانس است. وجود منابع دارای عدم‌قطعیت مانند منابع تولید تجدیدپذیر و بارها ماهیت مسئله برنامه‌ریزی را احتمالاتی کرده که لازم است در یک مدل مبتنی بر سناریو فرمول‌بندی و حل شود. در مدل پیشنهادی، از شاخص مقدار شرطی در ریسک (CVaR) برای تعدیل اثرات منفی سناریوهای نامطلوب در مدل احتمالاتی استفاده شده ‌است. در این روش حساسیت سود بهره‌بردار و حاشیه‌های امنیت ریزشبکه در حالت‌های با و بدون مشارکت بارهای پاسخ‌گو نسبت به شاخص ریسک ارزیابی شده‌است. استفاده از این روش بهره‌بردار را قادر می‌سازد تا با انتخاب ضریب ریسک مناسب ضمن بیشینه‌کردن سود خود، حاشیه امنیت فرکانس و ولتاژ ریزشبکه را نیز بهبود بخشد. هم‌چنین، در این مدل برای ارزیابی واقعی‌تر امنیت سیستم و تعیین دقیق انحرافات فرکانس و ولتاژ در هر سناریو، از روش پخش توان بهینه AC (AC-OPF) استفاده شده ‌است. درنظرگرفتن قیود امنیتی فرکانس و ولتاژ به‌صورت هم‌زمان (برای هر ساعت) یک مزیت این روش است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimal Energy and Reserve Scheduling of an Islanded Microgrid Considering Responsive Loads and Security

نویسندگان [English]

  • M. Vahedipour-Dahraie
  • H. Rashidizadeh-Kermani
  • H. Najafi
Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
چکیده [English]

In this paper, a probabilistic model for joint scheduling of energy and reserve (spinning and non-spinning) of an islanded microgrid is proposed considering demand response programs and security constraints. The objective of the problem is to maximize the expected profit of the microgrid operator with considering voltage and frequency security constraints. The presence of stochastic sources such as renewable resources and loads made the nature of the scheduling problem stochastic which is required to be formulated and solved in a scenario-based model. In the proposed method, to minimize the adverse effects of unfavorable scenarios, the cconditional value at risk (CVaR) criteria is used in the probabilistic model. In this method, the sensitivity of operator’s profit and the microgrid security margin in the cases with/ without the participation of responsive loads are assessed with considering risk criteria. Using this method, makes the operator capable to choose a proper risk factor as well as maximizing its expected profit and improving the security margin of voltage and frequency of the microgrid. In addition, in order to assess the system security more precisely and to determine the voltage and frequency deviations in each scenario, the AC optimal power flow (AC-OPF) is applied. Considering the security constraints of voltage and frequency simultaneously (at each hour) is a benefit of this method.

کلیدواژه‌ها [English]

  • Energy and reserve scheduling
  • demand response programs
  • AC optimal power flow (AC-OPF)
  • conditional value at risk (CVaR)
  • islanded microgrid
  • renewable resources
[1] J. S. Vardakas,   N. Zorba,  and C. V. Verikoukis, “A survey on demand response programs in smart grids: pricing methods and optimization algorithms,”  IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 152 – 178, 2015.
[2] K. McKenna, and  A. Keane,  “Residential load modeling of price-based demand response for network impact studies,”IEEE Transactions on Smart Grid, vol. 7, no. 5, pp. 2285 – 2294, 2016.
[3] N. G. Paterakis,   A. Taşcıkaraoğlu,  O.  Erdinç,   A. G. Bakirtzis, and  J. P. S. Catalão, “Assessment of demand-response-driven load pattern elasticity using a combined approach for smart households,” IEEE Transactions on Industrial Informatics, vol. 12, no. 4, pp:1529 – 1539, 2016.
[4] E. Karangelos, and F. Bouffard, “Towards full integration of demand-side resources in joint forward energy/reserve electricity markets,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 280-289, 2010.
[5] J. Shan, A. Botterud, and S. M. Ryan, “Impact of demand response on thermal generation investment with high wind penetration,” IEEE Trans. Smart Grid, vol. 4, pp. 2374-2383, 2013.
[6] X. Peng, and P. Jirutitijaroen, “A stochastic optimization formulation of unit commitment with reliability constraints,” IEEE Trans. Smart Grid, vol. 4, pp. 2200-2008, 2013.
[7] N. Parhizi, M. Marzband, S. M. Mirhosseini Moghaddam, B. Mohammadi Ivatloo, and F. Azarinejadian, “The experimental implementation of an energy management system for a grid connected microgrid by using a multi-period imperialist competition algorithm”, Tabriz Journal of Electrical Eng., vol. 46, no. 1, 2016.
[8] M. Javadi, S. M. Mirhosseini Moghaddam, and M. Marzband, “Optimal energy management of microgrids in the retail market based on non-cooperative game theory considering the uncertainty,” Tabriz Journal of Electrical Eng., vol. 46, no. 1, 2016.
[9] علی مهدی‌زاده، نوید تقی‌زادگان کلانتری،"برنامه‌ریزی تصادفی ریزشبکه جزیره‌ای در حضور سیستم ذخیره‌ساز هیدروژنی و برنامه‌ی پاسخگویی بار" مجله مهندسی برق دانشگاه تبریز، صفحات 725-711، جلد 47، شماره 2، 1395.
[10] S. Talari,  M. Yazdaninejad, and M. R. Haghifam, “Stochastic-based scheduling of the microgrid operation including wind turbines, photovoltaic cells, energy storages and responsive loads,”  IET Generation, Transmission & Distribution, vol. 9, no. 12, pp. 1498 – 1509, 2015.
[11] N. Amjady, J. Aghaei, and H. A. Shayanfar, “Stochastic multiobjective market clearing of joint energy and reserves auctions ensuring power system security,”  IEEE Trans.Power Syst, vol. 24, pp. 1841-1854, 2009.
[12] N. Rezaei, and M. Kalantar, “Stochastic frequency-security constrained energy and reserve management of an inverter interfaced islanded microgrid considering demand response programs,” Int. J. Electr Power Energy Syst., vol. 69, pp. 273–286, 2015.
[13] N. Rezaei, and M.Kalantar, “Smart microgrid hierarchical frequency control ancillary service provision based on virtual inertia concept: An integrated demand response and droop controlled distributed generation framework,” Energy Conversion and Management, vol. 92, pp. 287-301, 2015.
[14] M. Bayat, K. Sheshyekani, M. Hamzeh, and A. Rezazadeh, “Coordination of Distributed Energy Resources and Demand Response for Voltage and Frequency Support of MV Microgrids,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 506-516, 2016.
[15] J. Aghae, M. Karami, K.M. Muttaqi, H.A. Shayanfar, nd A. Ahmadi, “MIP-based stochastic security-constrained daily hydrothermal generation scheduling,”IEEE Syst J. vol. 9, no. 2, pp. 615-628, 2015.
[16] D. Arthur, S. Vassilvitskii, “K-means++: The advantages of careful seeding,” In Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA ’07), New Orleans, LA, USA, pp. 1027-1035, 2007.
[17] A. J. Conejo, M. Carrion, and J. M. Morales, “Decision Making Under Uncertainty in Electricity Markets,” New York, NY, USA: Springer, 2010.
[18] اعلمی، حبیب الله، "مدل‌سازی پاسخ‌گویی بار مبتنی بر ضرایب حساسیت قیمتی تقاضا"، پایان‌نامه دکتری، دانشگاه تربیت مدرس، 1389.
[19] M. Alipour, B. Mohammadi-Ivatloo, and K. Zare, “Stochastic risk-constrained short-term scheduling industrial cogeneration systems in the presence of demand response programs,” Applied Energy, vol. 136, pp. 393-404, 2014.
[20] A. Moshari, A. Ebrahimi, M. Fotuhi-Firuzabad, “Short-term impacts of DR programs on reliability of wind integrated power systems considering demand-side uncertainties,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2481-2490, 2016.
[21] A. Zakariazadeh, S. Jadid, and P. Siano, “Smart microgrid energy and reserve scheduling with demand response using stochastic optimization,” Electr. Power Energy Syst., vol.  63, pp. 523–533, 2014.
[22] N.G. Paterakis, O. Erdinc, A.G. Bakirtzis, and J.P.S. Catalão, “Load-Following Reserves Procurement Considering Flexible Demand-Side Resources under High Wind Power Penetration,” IEEE Trans. Power Syst., vol. 30, pp. 1337-1350, 2015.
[23] M. Vahedipour-Dahraie, H.R. Najafi, A. Anvari-Moghaddam, J.M. Guerrero, “Study of the effect of time-based rate demand response programs on stochastic day-ahead energy and reserve scheduling in islanded residential microgrids”, Appl. Sci., vol. 7, no. 4, pp. 1-19, 2017.
[24] “The General Algebraic Modeling System (GAMS) Software,” online available at: http://www.gams.com, accessed on 15 September 2016.