برنامه‌ریزی خطی مکان‌یابی و نوع‌سنجی کلیدهای کنترل از راه دور و کنترل دستی، برای بهبود پایایی شبکه‌های توزیع هوشمند

نویسندگان

دانشکده مهندسی برق و کامپیوتر - دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

دستیابی به حد مناسـبی از پایایی در سیسـتم توزیـع انرژی الکتریکـی، یکی از اهداف حرکت به‌سوی شبکه‌های توزیع هوشمند است. یکی از ویژگی‌های مهم شبکه هوشمند، توانایی خودترمیمی در این شبکه‌ها می‌باشد. کلیدهای کنترلی با توجه به عملکردی که دارند، موجب بهبود خودترمیمی و درنهایت افزایش دسترس‌پـذیری، آمادگی و پایایی سیستم می‌شوند. لذا به‌کارگیری این تجهیزات در شبکه‌های الکتریکی از اهمیت بالایی برخوردار است. مشارکت اصلی این مقاله با توجه به اهمیت مدل‌سازی خطی مسائل برای نیل به بهینه مطلق، ارائه  یک فرمول‌بندی نوین برنامه‌ریزی خطی برای مسئله مکان‌یابی و نوع‌سنجی کلیدهای کنترلی(کلید کنترل از راه دور و دستی) و ارائه سناریوهای مختلف برای مشخص کردن بهترین انتخاب نوع کلیدها و آرایش  کلیدها در برنامه‌ریزی‌های شبکه توزیع، به‌صورت پایایی‌محور است. از طرفی، با تحلیل حساسیت نسبت به بیشینه سرمایه‌گذاری اولیه و ضریب حساسیت تعریف‌شده در تابع هدف، که دو بخش تابع هدف را وزن‌دهی می‌کند، تحلیل جامعی از نحوه به‌کارگیری کلیدها در شبکه توزیع ارائه‌شده است. تابع هدف انتخاب‌شده برای این مسئله دو بخش دارد که هر بخش توسط ضریب تنظیم به‌صورت یکایی در تابع هدف مشارکت داده‌شده‌اند. بخش اول تابع هدف شامل هزینه سرمایه‌گذاری اولیه، هزینه قطعی مشترکین، هزینه تعمیرات و نگهداری تجهیزات است و بخش دوم تابع هدف شاخص پایایی سایدی (میانگین تداوم وقفه) است. نتایج برنامه‌ریزی ارائه‌شده در مقاله، اهمیت خطی‌بودن مسئله مکان‌یابی و نوع‌سنجی کلیدهای کنترلی را در شبکه توزیع نشان می‌دهد. در حل برنامه‌ریزی خطی مطرح‌شده از حل‌کننده سیپلکس استفاده شده است. 

کلیدواژه‌ها


عنوان مقاله [English]

Optimal placement and location of automatic and manual switches through linear programming to improve smart distribution systems reliability

نویسندگان [English]

  • A. Shahbazian
  • A. Fereidunian
Faculty of Electrical and Computer Engineering, K.N.Toosi University of Technology, Tehran, Iran
چکیده [English]

Achieving an appropriate level of reliability in electrical distribution systems is one of the main goals toward smart distribution grid. Moreover, self-healing is a significant features of smart distribution grid. Self-healing can be improved through installation of remote-controlled switches, which leads to an increase in availability and reliability. Thus, it is important to install controllable equipment in distribution grid. In this paper, a mixed integer linear program (MIP) is introduced to allocate remote-controlled and manual switches. In addition, reliability-centered approach is considered to find the best arrangement of switches in distribution grid. A sensitivity analysis is conducted on maximum investment cost, leads to a comprehensive analysis on installation of switches in distribution grid. Moreover, the objective function includes investment cost, customer interruption cost and maintenance cost. The formulation is solved by CPLEX solver.

کلیدواژه‌ها [English]

  • Linear Programing
  • smart Distribution Grids
  • remote-Controlled Switches
  • manual Controlled Switches
  • CPLEX
  • reliability
  [1] س. عباسپور، ک. زارع، ب. محمدی ایواتلو، «ارزیابی جنبه‌های فنی و اقتصادی شبکه توزیع با هدف توسعه DG بر مبنای کاربرد مدیریت اکتیو در شبکه»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 4، شماره پیاپی70، زمستان 1393.
[2] T. Li and B. Xu, “The self-healing technologies of smart distribution grid,” CICED 2010 Proceedings, Nanjing, pp. 1-6, 2010.
  [3] ع. شهسواری، ع. فریدونیان، ح. لسانی، «اتوماسیون توزیع برای بهبود پایایی سامانه‌های توزیع الکتریکی، قسمت دوم: توسعه تجهیزات کنترلی در شبکه و اثرات آن بر بهبود پایایی سیستم»، صنعت هوشمند، سال 16، شماره پیاپی150-149، صفحه 38-33، آبان و آذر 1392.
  [4] م. تورانی، م. ر. آقا ابراهیمی، ح. ر. نجفی، «برنامه‌ریزی محدوده پارکینگ خودروهای الکتریکی و شارژ و دشارژ آن به‌منظور بهبود قابلیت اطمینان در شبکه‌های هوشمند»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، شماره پیاپی80، تابستان 1396.  
  [5] ع. شهبازیان، ع. فریدونیان، س. م. ت. بطحایی، «تقویت ترمیمگر خودترمیم شبکه هوشمند با توسعه تجهیزات کنترلی و حفاظتی شبکه»، سی‌ویکمین کنفرانس بین‌المللی برق، آبان 1395.
[6] A. Shahsavari, A. Fereidunian, S.M. Mazhari, “A joint automatic and manual switch placement within distribution systems considering operational probabilities of control sequences,” International Transactions on Electrical Energy Systems, Vol.25, pp. 2745–2768, 2015.
[7] R. Billinton, S. Jonnavithula, “Optimal switching device placement in radial distribution systems,” IEEE Transactions on Power Systems, Vol. 11, No. 3, pp. 1646–1651, 1996.
[8] G. Celli, F. Pilo, “Optimal sectionalizing switches allocation in distribution networks,” IEEE Transactions on Power Systems, Vol. 14, No. 3, pp. 1167–1172, 1999.
[9] Y. Mao, “Protection System Design for Power Distribution Systems in the Presence of Distributed Generation,” A Doctor of Philosophy Thesis Submitted to the Faculty of Drexel University, 2005.  
[10] L. Silva, R. Pereira, J. Rivier Abbad, J. Mantovani, “Optimised placement of control and protective devices in electric distribution systems through reactive tabu search algorithm,” Electric Power Systems Research, Vol.78, pp. 372–381, 2008.
[11] W. Tippachon, D. Rerkpreedapong, “Multi-objective optimal placement of switches and protective devices in electric power distribution systems using ant colony optimization,” Electric Power Systems Research, Vol.79, pp. 1171–1178, 2009.
[12] J.-H. Teng, Y.-H. Liu, “A novel ACS-based optimum switch relocation method,” IEEE Transactions on Power Systems, Vol. 18, No. 1, pp. 113–120, 2003.
[13] D. P. Bernardon, M. Sperandio, V. J. Garcia, L. N. Canha, A. d. R. Abaide and E. F. B. Daza, “AHP Decision-Making Algorithm to Allocate Remotely Controlled Switches in Distribution Networks,”  IEEE Transactions on Power Delivery, vol. 26, no. 3, pp. 1884-1892, July 2011.
[14] P. M. S. Carvalho, L. A. F. M. Ferreira, A. J. C. da Silva, “A decomposition approach to optimal remote controlled switch allocation in distribution systems,” in IEEE Transactions on Power Delivery, vol. 20, no. 2, pp. 1031-1036, April 2005.
[15] Chao-Shun Chen, Chia-Hung Lin, Hui-Jen Chuang, Chung-Sheng Li, Ming-Yang Huang, Chia-Wen Huang, “Optimal placement of line switches for distribution automation systems using immune algorithm,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1209-1217, Aug. 2006.
[16] H. Falaghi, M.R. Haghifam, Ch. Singh, “Ant Colony Optimization-Based Method for Placement of Sectionalizing Switches in Distribution Networks Using a Fuzzy Multi objective Approach,”  IEEE Transactions on Power Delivery, Vol. 24, No. 1, 2009.
[17] Xu, Yin, et al. "Placement of remote-controlled switches to enhance distribution system restoration capability," IEEE Transactions on Power Systems, Vol. 31, No. 2, pp. 1139-1150, 2016.
[18] H. Dezaki, A. Abyaneh, A. Agheli, K. Mazlumi, “Optimized Switch Allocation to Improve the Restoration Energy in Distribution Systems,” Journal of Electrical Engineering, Vol. 63, No. 1, pp. 47–52, 2012.
[19] A. Moradi, M. Fotuhi-Firuzabad, “Optimal Switch Placement in Distribution Systems Using Trinary Particle Swarm Optimization Algorithm,” IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 271-279, Jan. 2008.
[20] M. Izadi, M. Farajollahi, A. Safdarian, M. Fotuhi-Firuzabad, “A multistage MILP-based model for integration of remote control switch into distribution networks,” InProbabilistic Methods Applied to Power Systems (PMAPS), International Conference, pp. 1-6, Oct 2016.
[21] A. Abiri-Jahromi, M. Fotuhi-Firuzabad, M. Parvania, M. Mosleh, “Optimized Sectionalizing Switch Placement Strategy in Distribution Systems,” IEEE Transaction on Power delivery, vol. 27, no. 1, pp. 362-370, Jan 2012.
[22] A. Alam, V. Pant, B. Das, “Switch and recloser placement in distribution system considering uncertainties in loads, failure rates and repair rates,” Electric Power Systems Research, vol. 140, no. 2, pp. 619-630, Nov 2016.
[23] J. R. Bezerra, G. C. Barroso, R. P. S. Leão and R. F. Sampaio, “Multiobjective Optimization Algorithm for Switch Placement in Radial Power Distribution Networks,” IEEE Transactions on Power Delivery, vol. 30, no. 2, pp. 545-552, April 2015.
[24] I. G. Sardou, M. Banejad, R. Hooshmand, A. Dastfan, “Modified shuffled frog leaping algorithm for optimal switch placement in distribution automation system using a multi-objective fuzzy approach,”  IET Generation, Transmission & Distribution, vol. 6, no. 6, pp. 493-502, June 2012.
[25] G. Celli, F. Pilo, “Optimal sectionalizing switches allocation in distribution networks” IEEE Transaction on Power Delivery, vol, 14, no. 3, pp.1167-1172, 1999.
[26] Ying. He, G. Anderson, and R.N. Allan, “Determining optimum location and number of automatic switching devices in distribution systems,” Proceeding of the IEEE power of Tech’99 Conference, Budapest, Hungry, pp. 182-186, Aug 29- sep 2 ,1999.
[27] J. H, Teng, C. N. Lu, “Feeder - Switch Reallocation for Customer Interuption Cost Minimization,” IEEE Transaction on Power delivery, vol. 17, pp. 254-259, Aug. 2002.
[28] A. Fereidunian, M.M Hosseini, and M. Abbasi Talabari. “Toward Self-financed Distribution Automation Development: Time Allocation of Automatic Switches Installation in Electricity Distribution Systems,” IET Generation, Transmission & Distribution, 2017.
[29] L. C. Coelho, “Linearization of the product of two variables,” jan 2016, http://www.leandro-coelho.com/linearization-product-variables/2017-01-20/.
[30] M. E. Khodayar, M. Barati, M. Shahidehpour, “Integration of high reliability distribution system in microgrid operation,” IEEE Transactions on Smart Grid, Vol. 3, No. 4, pp. 1997-2006, 2012.
[31] S. D. Manshadi, M. E. Khodayar, “Resilient operation of  multiple energy carrier microgrids,”  IEEE Transactions on Smart Grid, Vol. 6, No. 5, pp. 2283-2292, 2015.
[32] R. N. Allan, R. Billinton, I. Sjarief, L. Goel and K. S. So, “A reliability test system for educational purposes-basic distribution system data and results,” IEEE Transactions on Power Systems, vol. 6, no. 2, pp. 813-820, May 1991.
[33] R. A. Brealey, S. C. Meyer, “Principles of Corporate Finance,”  Sixth Edition. Irwin McGraw-Hill, London, p. 49, 2000.