کاربرد روش جدید برای حل مسئله پخش بار در سیستم‌های قدرت با نسبت بالای R/X

نویسنده

دانشکده فنی مهندسی - دانشگاه شهرکرد

چکیده

در یک سیستم قدرت مقدار راکتانس خط، عموماً بیش‌تر از مقدار مقاومت خط می‌باشد و درنتیجه روش‌هایی همچون روش نیوتن رافسون استاندارد و روش‌های مبتنی بر نیوتن رافسون، به‌راحتی در این سیستم‌ها همگرا می‌شوند. اما در حالت استفاده از جبران‌سازی سری همانند استفاده از خازن سری، میزان راکتانس خط کاهش پیدا می‌کند و درنتیجه نسبت R/X خط انتقال افزایش می‌یابد که در این حالت شرایط سیستم تغییر کرده و روش‌های مبتنی بر نیوتون رافسون استاندارد، یا دارای همگرایی با سرعت کم (تعداد تکرار بالا) و یا به‌کلی واگرا می‌شوند. درواقع با کم شدن مقدار راکتانس خط،اصطلاحاً عدد شرایط سیستم (نسبت بیش‌ترین مقدار ویژه به کمترین مقدار ویژه ماتریس ژاکوبین) افزایش یافته و روش نیوتون رافسون استاندارد در این سیستم همگرا نمی‌شود. در این مقاله از کاربرد یک روش جدید مبتنی بر تکرار برای حل سیستم‌های با نسبت R/X بالا ارائه شده است. مزیت این روش ارائه شده این است که مستقل از نسبت R/X، در کلیه سیستم‌ها با تعداد تکرار کم، همگرا می‌شود. روش پیشنهادی روی شبکه‌های تست 9، 30 و 118 باس IEEE  همچنین 11 و 2383 باس شبیه‌سازی و تحلیل شده است. نتایج به‌دست‌آمده نشان از دقت بالا و کارایی روش ارائه شده در حل مسائل پخش بار سیستم‌های قدرت می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of new Method to Solve Load Flow Problem in Power Systems with High Ratio of R/X

نویسنده [English]

  • A. Rabiee
Faculty of Engineering and Technology, Shahrekord University (SKU), Shahrekord, Iran
چکیده [English]

In the power system, usually the reactance of transmission line is greater than its resistance and thereby power flow algorithms such as Newton Raphson methods and newton based methods can easily converged. However, in the case of series compensation such as series capacitor, the reactance of transmission line is decreased and accordingly the ratio of R/X is increased. In such case system condition is changed and therefore Newton based power flow methods will converged hardly or even diverged. In fact, with increase of R/X ratio, conventionally the system condition number (the ratio of maximum to minimum eigenvalue of Jacobian matrix) is increased and Newton Raphson method is not converged. In this paper, a new iterative based method is present to solve power flow of system with high ratio of R/X. The main advantage of the proposed method is its independence to R/X ratio and will converged even for system with high ratio of R/X.  The suggested method is studied based on IEEE 9-bus, 30-bus and 118-bus also 11-bus and 2383-bus test systems. The obtained results show the effectiveness and accuracy of the proposed method in solving power flow problem of power systems, independent to R/X ratio.

کلیدواژه‌ها [English]

  • Newton Raphson load flow
  • Condition number of system
  • R/X ratio of line
  • Jacobian matrix
[1] B. Stott, ”Review of Load-Flow Calculation Methods,” Proc. of the, vol. 62, no. 7, pp.916-929, Jul. 1974.
[2] W. F. Tinney. and C. E. Hart., “Power Flow Solution by Newton's Method,” IEEE Trans. Power App. and Syst., vol. 86, no. 11, pp.1449-1460, Nov. 1967.
[3] P. R. Bijwe, S. M. Kelapure, “Nondivergent fast power flow methods,” IEEE Trans. Power Syst., vol. 18, no. 2, pp.633-638, 2003.
[4] S. Iwamoto, Y. Tamura, “A load flow calculation method for ill-conditioned power Systems,” IEEE Trans. Power App. Syst., vol. PAS-100, no. 4, pp. 1736-1743, Apr. 1981.
[5] F. Milano, “Continuous newton's method for power flow analysis,” IEEE Trans. Power Syst., vol. 24, no. 1, pp.50-57, 2009.
[6] M. M. M. El-Arini, “Decoupled power flow solution method for well-condition and ill-conditioned power systems,” IET Gen, Trans. Distri, vol. 140, no. 1, pp. 7-10, 1993.
[7] Enns and Mark, “An improved version of the fast decoupled load flow,” Proceedings of the IEEE, vol.65, no.2, pp. 278-279, Feb. 1977.
[8] J. Arrillaga and B. J. Harker, “Fast-decoupled three phase load flow,” Proc. Inst. Elec. Eng. Gen, Trans. Distri., vol. 125, no. 8, pp.734–740, Aug. 1978.
[9] B. Stott, J. Jardim and O. Alsaç, “DC Power Flow Revisited” IEEE Trans. Power Syst., vol. 24, no. 3, pp.1290-1300, Aug. 2009.
[10] Yehoda and Wallac, “Gradient Methods for Load-Flow Problems,” IEEE Trans. Power App. and Syst., vol. PAS-87, no. 5, pp.1314-1318, May. 1968.
[11] K. P. Wong, A. Li. and M. Y. Law, “Development of constrained-genetic-algorithm load-flow method,” Proc. IEE Gen., Trans. & Dist., vol. 144, no. 2, pp.91-99, Mar. 1997.
[12] S. Kim. and T. J. Overbye, ”Mixed power flow analysis using AC and DC models,” IET Gen., Trans. & Dist., vol. 6, no. 10, pp.1053–1059, Oct. 2012.
[13] J. G. Vlachogiannis, ”Fuzzy logic application in load flow studies,” IEE Gen., Trans. & Dist., vol. 148, no. 1, pp.34-40, Jun. 2001.
[14] X. Yang and X. Zhou, ”Application of asymptotic numerical method with homotopy techniques to power flow problems,” International Journal of Electrical Power & Energy Systems, vol. 57, no. 1, pp. 375–383, May 2014.
[15] D. Mehta, H. D. Nguyen and K. Turitsyn, “Numerical polynomial homotopy continuation method to locate all the power flow solutions,” IET Gen. Trans. Distr, vol.10,no. 12, pp. 2972-2980, 2016
[16] S. Rao, Y. Feng, D. J. Tylavsky and M. K. Subramanian, “The Holomorphic Embedding Method Applied to the Power-Flow Problem,” IEEE Trans. Power App. and Syst. pp. 1-13, 2015
[17] S. C. Tripathy, G. D. Prasad, O. P. Malik and G. S. Hope, “Load-flow solutions for ill-conditioned power systems by a Newton-like method,” IEEE Trans. Power App. Syst., 1982, PAS-101, (10), pp. 3648–3657.
[18] K. Amini, F. Rostami, “A modified two steps Levenberg–Marquardt method for nonlinear equations,” Journal of Computational and Applied Mathematics, 2015, 288, pp.341–350
[19] A. Trias, “Sigma Algebraic Approximants as a Diagnostic Tool in Power Networks,” U.S. Patent 2014/0156094, Jun. 5, 2014.
[20] زهیر هوشی، مهرداد طرفدار حق و مهران صباحی، "جبران‌ساز خط به خط: نسل جدیدی از ادوات FACTS"، مجله مهندسی تبریز، دوره 44، شماره 1، بهار 1393، صفحات: 66-57.
[21] عباس ربیعی، مرتضی محمدی، "پخش بار بهینه مقید به پایداری گذرا: رهیافت برنامه‌ریزی تصادفی"مجله مهندسی تبریز، دوره 46، شماره 1، بهار 1395، صفحات: 183-169.