کاهش نوسانات توان خروجی منابع تولید پراکنده در ریزشبکه‌ها با استفاده از سیستم ذخیره‌ساز انرژی باتری

نویسندگان

1 دانشکده مهندسی برق - دانشگاه علم و صنعت تهران

2 قطب علمی اتوماسیون و بهره‌برداری از سیستم‌های قدرت - دانشکده مهندسی برق - دانشگاه علم و صنعت تهران

چکیده

در منابع انرژی تجدیدپذیر مانند توربین‌های بادی و سیستم‌های انرژی خورشیدی، به دلیل آنکه توان تولیدی به صورت مستقیم وابسته به شرایط جوی و میزان وزش باد است، خروجی انرژی مزرعه‌های بادی و خورشیدی دارای ماهیتی تصادفی است. این ماهیت تصادفی می‌تواند منجر به مشکلاتی مانند نوسانات توان و فرکانس، کاهش کیفیت توان و قابلیت اطمینان در محل اتصال این منابع به شبکه شود. در این مقاله، یک ریزشبکه‌ی متصل به شبکه مبتنی بر سیستم توربین بادی و فتوولتائیک با در نظرگرفتن شرایط جوی و تغییرات سرعت باد مورد بررسی قرار گرفته‌است. به منظور کاهش نوسانات توان، یک سیستم ذخیره‌ساز انرژی باتری به کارگرفته شده‌است. سیستم کنترل ذخیره‌ساز انرژی باتری، دارای سه بخش است. به واسطه دو سطح کنترلی اول، توان مرجع برای میراسازی نوسانات توان سیستم‌های تولید پراکنده محاسبه می‌شود. فرآیند محاسبه توان مرجع با در نظرداشتن عمر مفید سیستم ذخیره‌ساز و حفاظت آن، انجام شده‌است. سپس توان مرجع تولید شده به سیستم کنترلی پیشنهادی مبدل منبع ولتاژ جهت کنترل مبدل اتصال دهنده ذخیره‌ساز باتری به شبکه داده می‌شود. جهت صحت سنجی کاربرد سیستم ذخیره‌ساز انرژی باتری جهت کاهش نوسانات توان منابع تولید پراکنده شبیه‌سازی در محیط نرم افزار MATLAB/ Simulink انجام گرفته است. نتایج به دست آمده، کارایی سیستم کنترلی برای کاهش نوسانات توان تولیدی سیستم‌های تولید پراکنده را تأیید می‌کند، به‌گونه‌ای که محتوای هارمونیکی نوسانات فرکانس متوسط از مقدار 15.5 درصد به 5.4 درصد رسیده ‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Smoothing Output Power Fluctuations of DGs in Microgrids Using Battery Energy Storage System

نویسندگان [English]

  • M. A. Rajabinezhad 1
  • S. Y. Mousazadeh 1
  • A. Jalilian 2
1 Iran University of Science and Technology, Tehran, Iran
2 Iran University of Science and Technology, Excellent center of power and automation, Tehran, Iran
چکیده [English]

In distributed generations (DG) such as wind turbines (WT) and photovoltaic systems (PV), since power production is directly dependent on weather conditions and wind speed, their powers have an intermittent nature. This intermittent characteristic can lead to power fluctuation, frequency deviation, reduction of power quality and reliability indexes at the Point of Common Coupling (PCC). In this paper, a grid-tied microgrid including WT and PV is studied and the effect of weather conditions and wind speed changes on power fluctuation and frequency deviatiom is investigated. In order to smooth the power fluctuations, a battery energy storage system (BESS) is used. Control system of this BESS consists of three control levels. Through the first two control levels, the DGs reference power is calculated aiming to smooth the network power. Effective life and protection of the BESS is considered in reference power calculation process. Afterward, the generated reference power is injected to the grid proper control system of voltage source converter connecting battery storage to PCC. In order to validate the effectiveness of BESS control system for smoothing power fluctuations of DGs, simulations studies have been done in MATLAB/ Simulink software. The results confirm that the proposed BESS control system is capable to reduce the output power fluctuations of DGs, Such a way that the average frequency of the fluctuations harmonic content reduce from 15.5 to 5.4 percent.

کلیدواژه‌ها [English]

  • Battery energy storage system
  • Distributed generation
  • Photovoltaic System
  • Power fluctuation smoothing
  • Mcrogrids
  • Wind turbines
[1] K.K.Leung and D.Stanto, “Improving Power System Operation & Control Utilizing Energy Storage,” in Proc.International Conf. on Advances in Power System Control, Operation and Management, APSCOM-97, pp. 626-632, Hong Kong, Nov.1997
[2] A.Ghosh, G.Ledwich, “Power Quality Enhancement Using Custom Power Devices”, Kluwer Academic Publishers, 2012.
[3] Jin-Hong Jeon; Jong-Yul Kim; Seul-Ki Kim; Jang-Mok Kim, “Unified Compensation Control of a Hybrid Energy Storage System for Enhancing Power quality and Operation Efficiency in a Diesel and Wind-Turbine Based Stand-alone Microgrid”, 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 264-270,  2012.
[4] J.M.Guerrero, Poh Chiang Loh; Tzung-Lin Lee; Chandorkar, M. “Advanced Control Architectures for Intelligent Microgrids—Part II: Power Quality, Energy Storage, and AC/DC Microgrids”, IEEE Transactions on Industrial Electronics, vol. 60, (4), pp. 1263-1270, April 2013.
[5] JJ Justo, F Mwasilu, J Lee, JW Jung, “AC-microgrids versus DC microgrids with distributed energy resources: A review” Renewable and Sustainable Energy Reviews, vol. 24, pp. 387–405, August 2013.
[6] F. Blaabjerg, Zhe Chen, S.B Kjaer, “Power Electronics as Efficient Interface in Dispersed Power Peneration Systems”, IEEE Transactions on Power Electronics, vol.19, no.5, pp.1184-1194, Sept 2004.
[7] S.M. Said, M.M. Aly; Abdel-Akher, M. “Application of Superconducting Magnetic Energy Storage (SMES) for Voltage Sag/Swell Supression in Distribution System with Wind Power Penetration”, 16th International Conference on Harmonics and Quality of Power (ICHQP), pp. 92-96, IEEE 2014.
[8] محسن دارابیان؛ ابوالفضل جلیلوند، "کنترل پیش‌بین با رویکرد بهبود میرایی نوسانات سیستم قدرت در حضور مزارع بادی با استفاده از سیستم ذخیره‌ساز انرژی ابرخازنی و SSSC" ، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، تابستان 1395، صفحه 59-73.  
[9] A. Oudalov, T.Buehler, D. Chartouni, “Utility scale applications of energy storage”. In Energy 2030 Conference. ENERGY, IEEE, pp. 1-7, 2008.
[10] H.C. Sung, J. B. Park, and Y. H. Joo, “Robust observer-based fuzzy control for variable speed wind power system : LMI approach”, Int. Journal of Control, Automation, and Systems, vol. 9, no. 6, pp. 1103- 1110, 2011, 12.
[11] N. G. Khani, M. Abedi, G. B. Gharehpetian, G. H. Riahy, “Offshore Wind Farm Power Control Using HVdc Link”. Canadian Journal of Electrical and Computer Engineering, 39(2), pp. 168-173, 2016.
[12] J.P. Barton, D.G. Infield, “Energy storage and its use with intermittent renewable energy”, IEEE Transactions on Energy Convers. vol. 19, (2), pp. 441 –448, 2004.
[13] W. Li, G. Joós, “Comparison of energy storage system technologies and configurations in a wind farm”. Power Electronics Specialists Conf., pp. 1280 –1285, June 2007.
[14] K.  Li, H. Xu, Q. Ma, J. Zhao, “Hierarchy control of power quality for wind-battery energy storage system”, IET Power Electronics, vol. 7, (8), pp.2123-2132, 2014.
[15] J. Tan, G. J. Li, Z. W. Tang. “Power control and benefit analysis based on compressed air energy storage in wind farms.” Autom. Electr. Power Syst 8. pp. 33-37. 2011.
[16] A. Tomkoi, R. Takahashi, T. Murata, “Smoothing control of wind power generator output by superconducting magnetic energy storage system”. In Proceedings of International Conference on Electrical Machines and Systems, Seoul, Korea; pp. 302–307. October 2007.
[17] Li, X., Hui, D., & Lai, X. (2013). Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations. IEEE Transactions on Sustainable Energy, 4(2), 464-473.
[18] O. Tremblay, L. A. Dessaint, A. I. Dekkiche, “A generic battery model for the dynamic simulation of hybrid electric vehicles”. In IEEE Vehicle Power and Propulsion Conference .pp. 284-289. September 2007.
[19] M. Z. Daud, A. Mohamed, M. C. Wanik, M. A. “Hannan, Performance evaluation of grid-connected photovoltaic system with battery energy storage”. In Power and Energy (PECon), IEEE International Conference on, pp. 337-342, December 2012.
[20] I. Wasiak, R. Pawelek, R. Mienski, “Energy Storage Application in Low-Voltage Microgrids for Energy Management and Power Quality Improvement.” IET Generation, Transmission & Distribution, IET. vol8, (3), pp. 463-472. 2014.
[21] S. S. Khorramabadi, A. Bakhshai, “Critic-based self-tuning PI structure for active and reactive power control of VSCs in microgrid systems”, IEEE Transactions on Smart Grid, vol 6, (1), pp. 92-103., 2015
[22] J.G. Slootweg, Wind power: modeling and impact on power system dynamics, PhD dissertation, Dept. Elect. Eng., Delft University of Technology, Delft, Netherlands, 2003.
[23] میلاد دلالی؛ علیرضا جلیلیان، "محاسبه آلودگی هارمونیکی و میان‌هارمونیکی ژنراتورهای القائی دوسو تغذیه بادی با استفاده از یک روش ترکیبی"،مجلـه مهندسـی بـرق دانشـگاه تبریـز، ۱۳۸۹ ; دوره 42، شماره 2، زمستان 1391، صفحه 25-37.
[24] P. Kundur, Power system stability and control (vol. 7). N. J. Balu, & M. G. Lauby (Eds.). New York: McGraw-hill. 1994.
[25] D. J. Trudnowski, A. Gentile, J. M. Khan, E. M. Petritz, “Fixed-speed windgenerator and wind-park modeling for transient stability studies”, IEEE Transactions on Power Systems, vol19, (4), pp. 1911-1917, 2004
[26] C.Abbey, K.Strunz, G.Joós. “A Knowledge-based Approach for Control of Two-Level Energy Storage for Wind Energy Systems”, IEEE Transactions on Energy Convers. vol. 24, (2), pp. 539–547. 2009.