ارائه یک مبدل ایزوله تشدیدی دوسویه جدید جهت اتصال منبع ذخیره‌ساز چرخ طیار به شبکه‌های توزیع dc

نویسندگان

1 دانشکده مهندسی برق و کامپیوتر - دانشگاه شهید بهشتی

2 دانشکده مهندسی برق و کامپیوتر - دانشگاه شهید بهشتی- تهران

چکیده

با توجه به تقاضای روزافزون برای مصرف انرژی الکتریکی، نیاز به ذخیره‌سازی آن بیش از پیش احساس می‌شود. در راستای برآورد این نیاز تکنولوژی‌های مختلف ذخیره‌سازی انرژی فراهم آمد. در این میان، به منابع ذخیره‌ساز چرخ طیار به‌دلیل چگالی توان بالا و دینامیک سریع توجه خاصی شده است. در این مقاله یک ساختار جدید برای اتصال منابع چرخ طیار به شبکه‌های توزیع dc معرفی می‌شود. ازجمله ویژگی‌های این ساختار آن است که اولاً ولتاژ dc لینک بالایی را برای مدارات داریو موتور BLDC فراهم می‌آورد که این موضوع سبب افزایش انرژی قابل ذخیره‌سازی در منابع چرخ طیار می‌شود. ثانیاً، مبدل پیشنهادی دارای ساختار تشدیدی بوده که سبب افزایش راندمان مبدل و بهره برداری حداکثری از انرژی ذخیره‌شده در منابع چرخ طیار می‌شود. مبدل پیشنهادی یک مبدل دوسویه بوده تا بتوان شارژ و دشارژ منابع چرخ طیار را به‌کمک یک مبدل انجام داد.مدل‌سازی مبدل پیشنهادی در دو حالت عملکرد آن صورت می‌گیرد و با انجام شبیه‌سازی از عملکرد آن اطمینان حاصل می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Introducing A New Isolated Resonant Bidirectional Converter for Connecting Flywheel Storage Systems to the dc Grids

نویسندگان [English]

  • M. Mahdavyfakhr 1
  • M. Hamzeh 1
  • A. Bozorgmehr 2
1 Faculty of Electrical and Computer Engineering, University of Shahid Beheshti, Tehran, Iran
2 Faculty of Electrical and Computer Engineering, University of Shahid Beheshti, Tehran, Iran
چکیده [English]

Different storage systems have developed as the key solution for the growing demand of electric power. To this aim, the flywheel storage systems are gaining a wide acceptance for their higher power density and fast dynamic response. In this paper, a novel power electronic topology is proposed for connecting the flywheel storage systems to the distribution systems. This topology provides high dc-link voltage for the power electronic circuit required for driving BLDC motors in flywheel. Consequently, larger power can be stored in flywheel storage system. Since, it is desired to fully exploit the stored energy in flywheel systems, the proposed topology have ZVS feature, which leads to increase of power conversion efficiency. Moreover, the proposed topology is a bidirectional converter for charging and discharging purposes.Also, when the converter is in discharging mode its output voltage remains constant with changes of load. The small signal and fundamental frequency analysis is performed to model the proposed converter. The converter is simulated in Matlab environment to validate its convincing performance.

کلیدواژه‌ها [English]

  • Isolated resonant bidirectional converter
  • flywheel storages
  • distribution grids
  • data centers
[1] H. Ibrahim, A. Ilinca and J. Perron, “Energy storage systems—Characteristics and comparisons,” Renewable and Sustainable Energy Reviews, vol. 12, no. 5, pp. 1221-1250, June 2008.
[2] P. F. Ribeiro, B. K. Johnson, M. L. Crow, A. Arsoy and Y. Liu, “Energy storage systems for advanced power applications,” Proceedings of the IEEE, vol. 89, no. 12, pp. 1744-1756, 2001.
[3] B. Bolund, H. Bernhoff and M. Leijon, “Flywheel energy and power storage systems,” Renewable and Sustainable Energy Reviews, vol. 11, no. 2, pp. 235-258, Feb. 2007.
[4] J. Tzeng, R. Emerson and P. Moy, “Composite flywheels for energy storage,” Composites Science and Technology, vol. 66, no. 14, pp. 2520-2527, Nov. 2006.
[5] H. Liu and J. Jiang, “Flywheel energy storage-An upswing technology for energy sustainability,” Energy and Buildings, vol. 39, no. 5, pp. 599-604, May 2007.
[6] T. Ichihara, K. Matsunaga, M. Kita, I. Hirabayashi, M. Isono, M. Hirose, K. Yoshii, K. Kurihara, O. Saito, S. Saito, M. Murakami, H. Takabayashi, M. Natsumeda and N. Koshizuka, “Application of superconducting magnetic bearings to a 10 kWh-class flywheel energy storage system,” IEEE Transactions on Applied Superconductivity, vol. 15, no. 2, pp. 2245-2248, 2005.
[7] S. Nagaya, N. Kashima, M. Minami, H. Kawashima and S. Unisuga, “Study on high temperature superconducting magnetic bearing for 10 kWh flywheel energy storage system,” IEEE Transactions on Applied Superconductivity, vol. 11, no. 1, pp. 1649-1652, 2001.
[8] G. Ma, W. Qu, G. Yu, Y. Liu, N. Liang and W. Li, “A Zero-Voltage-Switching Bidirectional DC-DC Converter With State Analysis and Soft-Switching-Oriented Design Consideration,” IEEE Transactions on Industrial Electronics, vol. 56, no. 6, pp. 2174-2184, 2009.
[9] S. R. Gurumurthy, A. Sharma, S. Sarkar and V. Agarwal, "Apportioning and mitigation of losses in a Flywheel Energy Storage system." 4th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Rogers, AR, 2013, pp. 1-6.
[10] D. Bandeira and I. Barbi, “A T-Type Isolated Zero Voltage Switching DC-DC Converter With Capacitive Output,” IEEE Transactions on Power Electronics, vol. PP, no. 99, pp. 1-1, 2016.
[11] C. Du, D. Xu, N. He and N. Zhu, “Modeling and Optimization of a Zero-Voltage Switching Inverter for High Efficiency and Miniaturization,” IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 150-163, 2017
[12] M. Ekhtiari, Z. Zhang and M. A. E. Andersen, “Analysis of Bidirectional Piezoelectric-Based Converters for Zero-Voltage Switching Operation,” IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 866-877, 2017.
[13] G. Chen, Y. Deng, Y. Tao, X. He, Y. Wang and Y. Hu, “Topology Derivation and Generalized Analysis of Zero-Voltage-Switching Synchronous DC-DC Converters With Coupled Inductors,” IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 4805-4815, 2016.
[14] محسن کربعلی‌زاده, نویدرضا ابجدی, غلامرضا عرب مارکده, و جعفر سلطانی, «کنترل تطبیقی با خطی‌سازی فیدبک ورودی-خروجی یک مبدل تشدیدی سری-موازی dc-dc »، مجله مهندسی برق دانشگاه تبریز, جلد 44، شماره 1، صفحه33-42، پاییز 1392
[15] H. Bodur and A. F. Bakan, “An improved ZCT-PWM DC-DC converter for high-power and frequency applications,” IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 89-95, 2004.
[16] W. Liu, J. Zhang and R. Chen, “Modelling and control of a novel zero-current-switching inverter with sinusoidal current output,” IET Power Electronics, vol. 9, no. 11, pp. 2205-2215, 2016.
[17] Y. Li, X. Lyu and D. Cao, “A Zero-Current-Switching High Conversion Ratio Modular Multilevel DC-DC Converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. PP, no. 99, pp. 1-1, 2016.
[18] K. R. Sree and A. K. Rathore, “Analysis and Design of Impulse Commutated Zero Current Switching Single Inductor Current-fed Three-phase Push-Pull Converter,” IEEE Transactions on Industry Applications , vol.PP, no.99, pp.1-1.
[19] J. L. Russi, V. F. Montagner, M. L. d. S. Martins and H. L. Hey, “A Simple Approach to Detect ZVT and Determine Its Time of Occurrence for PWM Converters”, IEEE Transactions on Industrial Electronics, vol. 60, no. 7, pp. 2576-2585, July 2013
[20] C. Gang, L. Yim-Shu, S. Y. R. Hui, X. Dehong and W. Yousheng, “Actively clamped bidirectional flyback converter,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 770-779, 2000.
[21] J. Ke and R. Xinbo, "Hybrid Full-Bridge Three-Level LLC Resonant Converter- A Novel DC-DC Converter Suitable for Fuel Cell Power System." pp. 361-367.
[22] S. Dusmez, A. Khaligh and A. Hasanzadeh, “A Zero-Voltage-Transition Bidirectional DC/DC Converter,” IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3152-3162, 2015.
[23] F. Zhang and Y. Yan, “Novel Forward-Flyback Hybrid Bidirectional DC-DC Converter,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1578-1584, 2009.
[24] W. McMurray, “Resonant snubbers with auxiliary switches,” IEEE Transactions on Industry Applications, vol. 29, no. 2, pp. 355-362, 1993.
[25] M. I. Daoud, A. Massoud, A. Elserougi, A. Abdel-Khalik and S. Ahmed, "A dual three-phase induction machine based flywheel storage system driven by modular multilevel converters for fault ride through in HVDC systems" IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, QLD, pp. 1-5, 2015.
[26] J. Gonçalves de Oliveira, “Power control systems in a flywheel based all-electric driveline,” Acta Universitatis Upsaliensis, 2011.
[27] J. Zou, K. Liu, J. Hu and J. Li,  “A Modified C-Dump Converter for BLDC Machine Used in a Flywheel Energy Storage System,” IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 4175-4178, 2011.
[28] A. Elserougi, A. M. Massoud and S. Ahmed, "Flywheel Energy Storage System based on boost DC-AC converter", IET Conference on Renewable Power Generation, Edinburgh, pp. 1-7, 2011.
[29] S. Xu and H. Wang, "Simulation and analysis of back-to-back PWM converter for flywheel energy storage system" 15th International Conference on Electrical Machines and Systems (ICEMS), Sapporo , pp. 1-5, 2012.
[30] S. R. Gurumurthy, V. Agarwal and A. Sharma, “A Novel Dual-Winding BLDC Generator-Buck Converter Combination for Enhancement of the Harvested Energy From a Flywheel,” IEEE Transactions on Industrial Electronics, vol. 63, no. 12, pp. 7563-7573, 2016.
[31] M. K. Kazimierczuk, Pulse-width modulated DC-DC power converters: John Wiley & Sons, 2015.
[32] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics: Springer Science & Business Media, 2007.
[33] لیلا محمدیان, ابراهیم بابایی, و محمد­باقر بناء شریفیان, «ارائه روش جدیدی برای مدل‌سازی مبدل کاهنده - افزاینده دوسویه با استفاده از شیوه جدیدی از روش گراف سیگنال جریان و به‌کارگیری آن در سیستم مدیریت انرژی خودروی برقی»، مجله مهندسی برق دانشگاه تبریز,  جلد 46، شماره 2، صفحه221-235، تابستان 1395