مدل تحلیلی جریان الکتریکی مبتنی بر بار با در نظر گرفتن میدان الکتریکی عرضی برای نانو ترانزیستور ماسفت دوگیتی

نویسنده

گروه مهندسی برق - دانشکده فنی و مهندسی - دانشگاه شهرکرد

چکیده

در این مقاله، برای ترانزیستور ماسفت دوگیتی متقارن با آلایش کم با استفاده از انتقال نفوذی و رانشی حامل‌های بار وارونه، یک مدل تحلیلی برای جریان الکتریکی ارائه شده است.  نخست، با استفاده از معادله پواسون یک‌بعدی کانال بلند در جهت عمود بر کانال در حضور حامل‌های متحرک بار، معادله دیفرانسیلی برای بار کانال به‌دست می‌آید که پاسخ آن تغییرات مؤلفه غلظت بار کانال بلند را در امتداد عمود بر کانال نشان می‌دهد. پتانسیل یک‌بعدی کانال بلند با استفاده از این مؤلفه محاسبه می‌شود. مؤلفه دوبعدی پتانسیل کانال کوتاه که ناشی از اثر میدان الکتریکی عرضی در ادوات کانال کوتاه است، از حل معادله لاپلاس به‌دست می‌آید و از طریق آن، مؤلفه دوبعدی تغییرات غلظت بار محاسبه می‌شود. غلظت کلی بار کانال از جمع دو مؤلفه بار کانال بلند و بار کانال کوتاه به‌دست می‌آید. با استفاده از بار کل محاسبه‌شده و قانون گوس در زیر گیت در هر نقطه در امتداد کانال، بار وارونه در آن نقطه محاسبه می‌شود. برخلاف مدل‌های موجود که بار وارونه را فقط با استفاده مؤلفه کانال بلند بار در راستای عمود بر کانال محاسبه می‌کنند، در روش پیشنهادی نشان داده می‌شود که مؤلفه بار دو بعدی کانال کوتاه ناشی از اثر میدان الکتریکی عرضی نیز در راستای عمود بر کانال تغییرات دارد که در محاسبه بار وارونه کل کانال تأثیرگذار خواهد بود و در ادوات کانال کوتاه باید در نظر گرفته شود. تطبیق مناسب بین نتایج حاصل از مدل و نتایج شبیه‌سازی  با نرم‌افزار، دقت مناسب مدل پیشنهادی را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Analytic Charge-Based Current Model of an Undoped Double-Gate MOSFET Considering the Lateral Electric Field

نویسنده [English]

  • S. A. Hashemi
Faculty of Engineering, Shahrekord University, Shahrekord, Iran
چکیده [English]

An analytical current model has been presented for an undoped symmetric double gate MOSFET based on the drift and diffusion of the inversion charges. First, using the one dimensional long channel (1D) Poisson’s equation perpendicular to the channel with mobile charges, a differential equation for charge of the channel is achieved which its solution gives the variation of the long channel charge concentration perpendicular to the channel. The 1D long channel potential is calculated by this long channel charge. The 2D short channel potential caused by the lateral electric field (which is important in short channel devices) is the solution of the 2D Laplace’s equation. Using this potential, the 2D variation of the short channel charge is extracted. Using the total calculated charge and the Gauss’s law at each point along the channel under the gate, the inversion charge in that point is calculated. Despite the existing models in which the inversion charge is calculated from the long channel charge perpendicular to the channel, in the proposed method it is shown that the 2D short channel charge (introduced by the lateral electric field) varies perpendicular to the channel too which affects calculating the inversion charge and must be taken into account in short channel devices. Finally, using the total inversion charge, the current is calculated. Good agreement between the results of the model and the results obtained by the Atlas software shows the validity of the proposed method.

کلیدواژه‌ها [English]

  • Inversion charge
  • quasi-fermi potential
  • double-gate MOSFET
  • drift-diffusion current
  • poisson’s equation
[1] پرویز امیری، محمود صیفوری، بابک آفرین و آوا هدایتی‌پور، «طراحی پیش‌تقویت‌کننده RGC کم نویز مدار مجتمع CMOS با پهنای باند GHz20 و بهره dBΩ60»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 2، صفحه 23-15، تابستان 95.
[2] اکرم امیری و سیروس طوفان، «مبدل زمان به دیجیتال رزولوشن بالا و توان مصرفی کم مبتنی بر اسیلاتور حلقوی چند مسیره»، مجله مهندسی برق دانشگاه تبریز، دوره 46، شماره 3، صفحه 50- 45، پاییز 95.
[3] A. Tsormpatzoglou, C.A. Dimitriadis, R. Clerc, Q. Rafhay, G. Pananakakis and G. Ghibaudo, “Semi-analytical modeling of short-channel effects in Si and Ge symmetrical double-gate MOSFETs,” IEEE Trans. Electron Devices, vol. 54, no. 8, pp. 1943-1952, 2007.
[4] I. Ferain, C.A. Colinge and J. Coling, “Multigate transistors as the future of classical metal-oxide-semiconductor field effect transistors,” Nature, vol. 479, pp. 310-316, 2011.
[5] P Razavi and A.A. Orouji, “Dual material gate oxide stack symmetric double gate MOSFET: Improving short channel effects of nanoscale double gate MOSFET,” International Biennial Baltic Electronics Conference, pp. 83-86, Tallinn, Estonia, October 6-8, 2008.
[6] S. Mohammadi, A. Afzali-Kusha and S. Mohammadi, “Compact modeling of short-channel effects in symmetric and asymmetric 3-T/4-T double gate MOSFETs,” Microelectronics Reliability, vol. 51, pp. 543-549, 2011.
[7] M. Bhartia and A.K. Chatterjee, “Modeling the drain current and its equation parameters for lightly doped symmetrical double-gate MOSFETs,” Journal of Semiconductors, vol. 36, no. 4, pp 0440031-7, 2015.
[8] R. Shankar, G. Kaushal, S. Maheshwaram, S. Dasgupta and S.K. Manhas, “A degradation model of double gate and gate-all-around MOSFETs with interface trapped charges including effects of channel mobile charge carriers,” IEEE Trans. Device and Materials Reliability, vol. 14, no. 2, pp. 689-697, 2014.
[9] H.A.E. Hamid, J.Roig Guitart and B.Iníguez, “Two-dimensional analytical threshold voltage and subthreshold swing models of undoped symmetric double-gate MOSFETs,” IEEE Trans. Electron Devices, vol. 54, no. 6, pp. 1402-1408, 2007.
[10] Y. Taur, X. Liang, W. Wang and H. Lu, “A continuous, analytical drain current model for double-gate MOSFETs,” IEEE Electron Device Letters, vol. 25, no. 2, pp. 107-109, 2004.
[11] A. Oritiz-Conde, F.J.G. Sonchez and J. Muci, “Rigorous analytic solution for the drain current of undoped symmetric dual-gate MOSFETs,” Solid-State Electronics, vol. 49, no. 4, pp. 640-647, 2005.
[12] A.S. Roy, J.M. Sallese and C.C. Enz, “A closed-form charge based expression for drain-current in symmetric and asymmetric double gate MOSFET,” Solid-State Electronics, vol. 50, no. 4, pp. 687-693, 2006.
[13] J.P. Duarte, S. Choi, D. Moon, J. Ahn, J. Kim, S. Kim and Y. Choi, “A universal core model for multiple-gate field-effect transistors. part I: charge model,” IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 840-847, 2013.
[14] J. He, F. Liu, J. Zhang, J. Feng, J. Hu, S. Yang and M. Chan, “A carrier-based approach for compact modeling of the long-channel undoped symmetric double-gate MOSFETs,” IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 1203-1209, 2007.
[15] S. Mohammadi and A. Afzali-Kusha, “Modeling of drain current, capacitance and transconductance in thin film undoped symmetric DG MOSFETs including quantum effects,” Microelectronics Reliability, vol. 50, pp. 338-345, 2010.
[16] J.P. Duarte, S. Choi, D. Moon, J. Ahn, J. Kim, S. Kim and Y. Choi, “A universal core model for multiple-gate field-effect transistors. part II: drain current model,” IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 848-855, 2013.
[17] M. Gholizadeh and S.E. Hosseini, “A 2-D analytical model for double-gate tunnel FETs,” IEEE Trans. Electron Devices, vol. 61, no. 5, pp.1494-1500, 2014.
[18] J.P. Duarte, S.J. Choi and Y.K. Choi, “A full-range drain current model for double-gate junctionless transistors,” IEEE Trans. Electron Devices, vol. 58, no. 12, pp. 4219-4225, 2011.
[19] A. Yesayan, F. Jazaeri and J.M. Sallese, “Charge-based modeling of double-gate and nanowire junctionless FETs including interface-trapped charges,” IEEE Trans. Electron Devices, vol. 63, no. 3, pp.1368-1374, 2016.
[20] X. Jin, X. Liu, M. Wu, R. Chuai and J. Lee, “A unified analytical continuous current model applicable to accumulation mode (junctionless) and inversion mode MOSFETs with symmetric and asymmetric double-gate structures,” Solid-State Electronics, vol. 79, pp. 206-209, 2013.
[21] R.K. Baruah and P.P. Roy, “A surface-potential based drain current model for short-channel symmetric double-gate junctionless transistor,” Journal of Computational Electronics, vol. 15, no. 1, pp. 45-52, 2016.
[22] C. Jiang, R. Liang, J. Wang and J. Xu, “A two-dimensional analytical model for short channel junctionless double-gate MOSFETs,” AIP Advances, vol. 5, pp. 057122-13, 2015.
[23] T.A. Oproglidis, A. Tsormpatzoglou, D. Tassis, T.A. Karatsori, S. Barraud, G. Ghibaudo and C.A. Dimitriadis, “Analytical drain current compact model in the depletion operation region of short-channel triple-gate junctionless transistors,” IEEE Trans. Electron Devices, vol. 64, no. 1, pp. 66-72, 2017.
[24] F. Ávila-Herrera, B.C. Paz, A. Cerdeira, M. Estrada and M.A. Pavanello, “Charge-based compact analytical model for triple-gate junctionless nanowire transistors,” Solid-State Electronics, vol. 122, pp. 23-31, 2016.
[25] H.C. Pao and C.T. Sah, “Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors,” Solid-State Electronics, vol. 9, no. 10, pp. 927-937, 1966.
[26] D. Munteanu, J. Autran and M. Moreau, “Quantum compact model of drain current in independent double-gate metal-oxide-semiconductor field-effect transistors,” Japanese Journal of Applied Physics, vol. 50, pp. 3011-3018, 2011.
[27] M. Balaguer, J.B. Roldan, L. Donetti and F. Gamiz, “Inversion charge modeling in n-type and p-type double-gate MOSFETs including quantum effects: The role of crystallographic orientation,” Solid-State Electronics, vol. 67, no. 1, pp. 30-37, 2012.
[28] S. Shee, G. Bhattacharyya and S.K. Sarkar, “Quantum analytical modeling for device parameters and I-V characteristics of nanoscale dual-material double-gate silicon-on-nothing MOSFET,” IEEE Trans. Electron Devices, vol. 61, no.8, pp. 2697-2704, 2014.
[29] R. Hosseini, M. Fathipour and R. Faez, “Quantum simulation study of gate-all-around (GAA) silicon nanowire transistor and double gate metal oxide semiconductor field effect transistor (DG MOSFET),” International Journal of the Physical Sciences, vol. 7, no.28, pp. 5054-5061, 2012.
[30] Silvaco. Inc., ATLAS user’s manual, Santa Clara, USA, 2005.