[1] Parsaei, M. Reza, R. Mohammadi, and R. Javidan. “A new adaptive traffic engineering method for telesurgery using ACO algorithm over software defined networks.”European Research in Telemedicine/La Recherche Europeenne en Telemedecine, vol. 6, no. 3-4, pp. 173-180, 2017.
[2] S. Rowshanrad, V. Abdi, M. Keshtgari, “Performance evaluation of sdn controllers: Floodlight and opendaylight.” IIUM Engineering Journal , vol. 17, no. 2, pp. 47–57, 2016.
[3] C.Y. Chu, K. Xi, M. Luo, H.J. Chao, “Congestion-aware single link failure recovery in hybrid SDN networks.” In 2015 IEEE Conference on Computer Communications (INFOCOM) (IEEE, 2015), pp. 1086–1094.
[4] S. Song, J. Lee, K. Son, H. Jung, J. Lee, “A congestion avoidance algorithm in SDN environment.” In 2016 International Conference on Information Networking (ICOIN) (IEEE, 2016), pp. 420–423.
[5] T. Zhu, D. Feng, F. Wang, Y. Hua, Q. Shi, Y. Xie, Y. Wan, “A congestion-aware and robust multicast protocol in sdn-based data center networks.” Journal of Network and Computer Applications 95, 105–117 (2017).
[6] Hu, Y., Peng, T., & Zhang, L. (2017). “Software‐Defined Congestion Control Algorithm for IP Networks.” Scientific Programming, 2017(1), 3579540.
[7] M. Rahman, N. Yaakob, A. Amir, R. Ahmad, S. Yoon, A. Abd Halim, “Performance analysis of congestion control mechanism in software defined network (SDN),” In MATEC Web of Conferences, vol. 140 (EDP Sciences, 2017), p. 01033.
[8] S.Y. Wang, L.M. Chen, S.K. Lin, L.C. Tseng,” Using SDN congestion controls to ensure zero packet loss in storage area networks,” In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (IEEE, 2017), pp. 490–496.
[9] D. Shen, W. Yan, Y. Peng, Y. Fu, Q. Deng, “Congestion control and traffic scheduling for collaborative crowdsourcing in sdn enabled mobile wireless networks.” Wireless Communications and Mobile Computing 2018, 1–11 (2018).
[10] M.M. Tajiki, B. Akbari, M. Shojafar, S.H. Ghasemi, M.L. Barazandeh, N. Mokari, L. Chiaraviglio, M. Zink, “Cect: Computationally efficient congestion-avoidance and traffic engineering in software-defined cloud data centers.” Cluster Computing 21, 1881–1897 (2018).
[11] J. Zhao, M. Tong, H. Qu, J. Zhao, “An Intelligent Congestion Control Method in Software Defined Networks,” In 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN) (IEEE, 2019), pp. 51–56.
[12] K. Lei, Y. Liang, W. Li, “Congestion control in sdn-based networks via multi-task deep reinforcement learning.” IEEE Network 34(4), 28–34 (2020).
[13] Y.J. Chen, L.C. Wang, M.C. Chen, P.M. Huang, P.J. Chung, “Sdn-enabled traffic-aware load balancing for m2m networks.” IEEE Internet of Things Journal 5(3), 1797–1806 (2018).
[14] M.L. Chiang, H.S. Cheng, H.Y. Liu, C.Y. Chiang, “Sdn-based server clusters with dynamic load balancing and performance improvement.” Cluster Computing 24, 537–558 (2021).
[15] J. Zhang, M. Ye, Z. Guo, C.Y. Yen, H.J. Chao, “CFR-RL: Traffic engineering with reinforcement learning in sdn.” IEEE Journal on Selected Areas in Communications 38(10), 2249–2259 (2020).
[16] Y.F. Yankam, V.K. Tchendji, J.F. Myoupo, “Wos-coms: Work stealing-based congestion management scheme for sdn programmable networks.” Journal of Network and Systems Management 32(1), 23 (2024).
[17] G. Diel, C.C. Miers, M.A. Pillon, G.P. Koslovski, “Rscat: Towards zero touch congestion control based on actor–critic reinforcement learning and software-defined networking.” Journal of Network and Computer Applications 215, 103639 (2023).
[18] U. Prajapati, B.C. Chatterjee, A. Banerjee, “ Optigsm: Greedy-based load balancing with minimum switch migrations in software-defined networks.” IEEE Transactions on Network and Service Management 21, 2200-2210 (2023).
[19] Y. Darmani, M. Sangelaji. "QDFSN: QoS-enabled Dynamic and Programmable Framework for SDN." Tabriz Journal of Electrical Engineering 51, no. 1 , 1-10 (2021)
[20] A.Ghorbannia Delavar, K. Beigi. "ESV-DBRA: An enhanced method for proportional distribution of the multitenant SDN traffic load." Tabriz Journal of Electrical Engineering 52, no. 4, 269-280 (2022).
[21] B. Xiong, X. Peng, J. Zhao, “A concise queuing model for controller performance in software-defined networks”. J. Comput. 11(3), 232–237 (2016).
[22] U. Srisamarn, L. Pradittasnee, N. Kitsuwan, “Resolving load imbalance state for sdn by minimizing maximum load of controllers.” Journal of Network and Systems Management 29(4), 46 (2021).
[23] O. Adekoya, A. Aneiba, M. Patwary, “An improved switch migration decision algorithm for sdn load balancing.” IEEE Open Journal of the Communications Society 1, 1602–1613 (2020).
[24] Y. Zhou, K. Zheng, W. Ni, R.P. Liu, “Elastic switch migration for control plane load balancing in sdn.” IEEE Access 6, 3909–3919 (2018).
[25] M.T. Islam, N. Islam, M.A. Refat, “Node to node performance evaluation through ryu sdn controller.” Wireless Personal Communications 112, 555–570 (2020).
[26] S. Bhardwaj, S.N. Panda, “ Performance evaluation using ryu sdn controller in software-defined networking environment.” Wireless Personal Communications 122(1), 701–723 (2022).