طراحی و شبیه‌سازی فیلترهای چندمسیره با ضریب کیفیت بالا برای استانداردهای GSM و LTE

نوع مقاله : علمی-پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران

2 دانشیار، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران

3 استاد، دانشکده مهندسی برق و کامپیوتر، دانشگاه تبریز، تبریز، ایران

چکیده

در این مقاله، یک فیلتر چندمسیره با ضریب کیفیت بالا برای استانداردهای GSM و LTE ارائه می‌شود. این فیلتر از ترکیب فیلتر پایین‌گذر Sallen-Key، تقویت‌کننده کم نویز و فیلتر چندمسیره ساده طراحی‌شده است. فیلتر مذکور در بازه فرکانسی 0.1 تا 3 گیگاهرتز با پهنای‌باند 20 مگاهرتز کار می‌کند و به ترتیب برای فرکانس‌های 0.9 و 2.7 گیگاهرتز ضریب کیفیتی برابر 45 و 135 دارد. تقویت‌کننده کم نویز بدون سلف با فیدبک مقاومتی، از نوع کلاس AB با جریان بایاس 1 میلی‌آمپر و بهره 35.8 دسی‌بل در بازه فرکانسی صفر تا 4.5 گیگاهرتز با استفاده از فنّاوری 180nm CMOS TSMC طراحی‌شده است. توان مصرفی این تقویت‌کننده 7.2 میلی‌وات و IIP3 برابر6.4dBm می‌باشد. از سوئیچ‌هایی با مقاومت روشن 16 اهم با فنّاوری 180nm CMOS TSMC فیلتر چندمسیره پیشنهادی استفاده شده و برای فرکانس‌های کلاک 0.9 و 2.7 گیگاهرتز با دامنه ورودی 0.1 ولت، دامنه بهره برابر 6.7- و 15.81- دسی‌بل دارد. بهره نهایی این فیلتر 8.37 دسی‌بل، نویز 8.24 دسی‌بل،IIP3 برابر9.2dBm ، توان مصرفی 10 میلی وات و S11 = -26.9dB می‌باشد. در مقایسه با سایر کارهای مشابه، این فیلتر از نظر بهره، بازه فرکانسی، پهنای‌باند و توان مصرفی به‌طور قابل توجهی بهبود یافته است. همچنین نویز و IIP3 آن در محدوده مشابهی با سایر فیلترها قرار دارد. برای ایجاد کلاک این فیلتر از مولد ربعی دو بیتی با 11 ترانزیستور و با استفاده از شمارنده جانسون و فلیپ‌فلاپ‌های نوع D با منطق TSPC استفاده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design and Analysis of High Quality Factor N-path Filters for LTE and GSM Standards

نویسندگان [English]

  • Ahmad Najjari 1
  • Siroos Toofan 2
  • Ziaddin Daie Kuzekanani 3
  • Jafar Sobhi 2
1 Electrical and Computer Engineering, Tabriz University, Tabriz, and Iran.
2 Electrical and Computer Enginnering, Tabriz University, Tabriz, and Iran.
3 Electrical and Computer Engineering, Tabriz University, Tabriz, and Iran.
چکیده [English]

The paper introduces a N-path filter with high-quality factors for GSM and LTE standards. The filter is constructed from a Sallen-Key low-pass filter, LNA, and simple N-path filter. It operates in the frequency range of 0.1 to 3 GHz with a 20 MHz bandwidth and exhibits quality factors of 45 and 135 for frequencies of 0.9 and 2.7 GHz, respectively. Furthermore, an inductor-free LNA with resistive feedback is designed. It belongs to the class AB type with a 1 mA current bias and offers 35.4 dB gain in the frequency range of 0 to 4.5 GHz. This amplifier, built using 180nm CMOS TSMC technology, consumes 7.2 mW of power, and an IIP3 of 6.4 dBm. The proposed N-path filter utilizes 16 ohm switches on-resistance with 180nm CMOS TSMC technology, and at clock frequencies of 0.9 and 2.7 GHz with an input amplitude of 0.1 V, it provides gains amplitude of -6.7 dB and -15.81 dB. The overall gain of this filter is 8.37 dB, with a noise of 8.24 dB, an IIP3 of 9.2 dBm, consumes 10 mW of power, and S11 = -26.9 dB. In comparison to similar works, this filter exhibits significant improvements in terms of gain, frequency range, bandwidth, and power consumption while maintaining noise and IIP3 levels consistent with other filters. For clock generation, the filter is designed using a two-bit quadrature generator comprising 11 transistors, alongside a Johnson counter and D-type flip-flops with TSPC logic.

کلیدواژه‌ها [English]

  • N-path filter
  • low noise amplifier
  • Sallen-Key filter
  • clock frequency
  • bandwidth
  • noise
[1] T. Nguyen, “Integrated Micromechanical Radio Front Ends,” International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, pp. 3-4, 2008.
[2] V. Wright, “A review of SAW resonator filter technology,” IEEE Ultrasonics Symposium Proceedings, vol. 1, pp. 29-38, Oct. 1992.
[3] Ruby, P. Bradley, J. Larson, Y. Oshmyansky and D. Figueredo, “Ultra-miniature high-Q filters and duplexers using FBAR technology,” IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC, San Francisco, CA, USA, pp. 120-121, 2001.
[4] C. Ruby et al., “High-Q FBAR filters in a wafer-level chip-scale package,” IEEE International Solid-State Circuits Conference. Digest of Technical Papers, San Francisco, CA, USA, vol.1, pp. 184-458, 2002.
[5] Ghaffari, E. A. M. Klumperink and B. Nauta, “Tunable N-Path Notch Filters for Blocker Suppression: Modeling and Verification,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 6, pp. 1370-1382, June 2013.
[6] Mirzaei, H. Darabi and D. Murphy, “A Low-Power Process-Scalable Super-Heterodyne Receiver With Integrated High-Q Filters,” in IEEE Journal of Solid-State Circuits, vol. 46, no. 12, pp. 2920-2932, Dec. 2011.
[7] Karami, A. Banaeikashani, B. Behmanesh and S. M. Atarodi, “An N-Path Filter Design Methodology with Harmonic Rejection, Power Reduction, Foldback Elimination, and Spectrum Shaping,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4494-4506, Dec. 2020.
[8] Darvishi, R. van der Zee and B. Nauta, “Design of Active N-Path Filters,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 2962-2976, Dec. 2013.
[9] Lin and Pui-In Mak, Rui P. Martins, “A 0.028mm2 11mW Single-Mixing Blocker-Tolerant Receiver with Double-RF N-Path Filtering, S11 Centering, +13dBm OB-IIP3 and 1.5-to-2.9dB NF,” ISSCC RF TX/RX Design Tech. Paper Continuations, pp. 36-38, Feb. 2015.
[10] W. Park and B. Razavi, “Channel Selection at RF Using Miller Bandpass Filters,” in IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 3063-3078, Dec. 2014.
[11] Song and H. Hashemi, “RF Filter Synthesis Based on Passively Coupled N-Path Resonators,” in IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2475-2486, Sept. 2019.
[12] Reiskarimian and H. Krishnaswamy, “Design of all-passive higher-order CMOS N-path filters,” 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Phoenix, AZ, USA, 2015, pp. 83-86.
[13] Xu and P. R. Kinget, “A Switched-Capacitor RF Front End With Embedded Programmable High-Order Filtering,” IEEE Journal of Solid-State Circuits, vol. 51, no. 5, pp. 1154-1167, 2016.
[14] E. Franks and I. W. Sandberg, “An alternative approach to the realization of network transfer functions: The N-path filter,” in The Bell System Technical Journal, vol. 39, no. 5, pp. 1321-1350, Sept. 1960.
[15] A. M. Klumperink, H. J. Westerveld and B. Nauta, “N-path filters and mixer-first receivers: A review,” IEEE Custom Integrated Circuits Conference (CICC), pp. 1-8, April 2017.
[16] Ghaffari, E. A. M. Klumperink, M. C. M. Soer and B. Nauta, “Tunable high-Q N-path bandpass filters: Modeling and Verification,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 998-1010, May 2011.
[17] Langer, “A new type of N-path N filters with two pairs of complex poles,” IEEE International Solid-State Circuits Conference. Digest of Technical Papers, Philadelphia, PA, USA, pp. 26-27, 1968.
[18] Mirzaei, H. Darabi and D. Murphy, “Architectural Evolution of Integrated M-Phase High-Q Bandpass Filters,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 1, pp. 52-65, Jan. 2012.
[19] Lawrence P. Huelsman, Active and passive analog filter design: an introduction, McGraw-Hill, 1993.
[20] Gao, B. Nauta and E. Klumperink, “Advantages of Shift Registers Over DLLs for Flexible Low Jitter Multiphase Clock Generation,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 3, pp. 244-248, 2008.
[21] Yang, H. Yuksel, A. Molnar, “A wideband highly integrated and widely : tunable transceiver for in-band full-duplex communication,” IEEE Journal of Solid-State Circuits, v. 50, n. 5, p. 1189–1202, 2015.
[22] Zhu, H. Krishnaswamy and P. R. Kinget, “Field-Programmable LNAs With Interferer-Reflecting Loop for Input Linearity Enhancement,” in IEEE Journal of Solid-State Circuits, vol. 50, no. 2, pp. 556-572, Feb. 2015.
[23] Mohammadpour, B. Behmanesh, S. M. Atarodi, “An N-Path Enhanced-Q Tunable Filter With Reduced Harmonic Fold Back Effects,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60, no. 11, pp. 2867-2877, Nov. 2013.
[24] Eskandari, A. Ebrahimi and H. Faraji. “An area-efficient broadband balun-LNA-mixer front-end for multi-standard receivers,” Tabriz Journal of Electrical Engineering, vol. 51, no. 1, pp. 11-17, June 2021.
[25] Chaghaei, A. Jalali, J. Mazloum, "Design of an inductor-free differential low-noise amplifier with active and passive gain for cognitive radio", Journal of Electrical Engineering, University of Tabriz, vol. 50, no. 1, pp. 75-85, June 2020.
[26] Darvishi, R. van der Zee, E. A. M. Klumperink and B. Nauta, “Widely Tunable 4th Order Switched Gm-C Band-Pass Filter Based on N-Path Filters,” in IEEE Journal of Solid-State Circuits, vol. 47, no. 12, pp. 3105-3119, Dec. 2012.
[27] Krishnamurthy and A. M. Niknejad, “Design and Analysis of Enhanced Mixer-First Receivers Achieving 40-dB/decade RF Selectivity,” in IEEE Journal of Solid-State Circuits, vol. 55, no. 5, pp. 1165-1176, May 2020.