[1] M. Pandey, M. Arora, S. Arora, Ch. Goyal, V. K. Gera, and H. Yadav, “AI-based Integrated Approach for the Development of Intelligent Document Management System (IDMS)”, Procedia Computer Science, vol. 230, pp. 725-736, 2023.
[2] N. Girdhar, M. Coustaty, A. Doucet, “Digitizing History: Transitioning Historical Paper Documents to Digital Content for Information Retrieval and Mining—A Comprehensive Survey”, IEEE Transactions on Computational Social Systems, pp. 1-30, 2024.
[3] H.A. Alhamad, M. Shehab, M. K. Y. Shambour, M. A. Abu-Hashem, A. Abuthawabeh, H. Al-Aqrabi, M. Sh. Daoud, F. B. Shannaq, “Handwritten Recognition Techniques: A Comprehensive Review”, Symmetry, vol. 16, no. 6, p. 681, 2024.
[4] P. Shivakumara, U. Pal, “Cognitively Inspired Video Text Processing”, Springer Singapore, 2021.
[5] Z. Shen, R. Zhang, M. Dell, B. Charles, G. Lee, J. Carlson, W. Li, “Layoutparser: A unified toolkit for deep learning based document image analysis” In 16th International Conference on Document Analysis and Recognition (ICDAR), Lausanne, Switzerland, September 5–10, pp. 131-146, 2021.
[6] J. Memon, M. Sami, R. A. Khan, M. Uddin, “Handwritten optical character recognition (OCR): A comprehensive systematic literature review (SLR)”, IEEE access, vol. 8, pp. 142642-142668, 2020.
[7] J. Park, E. Lee, Y. Kim, I. Kang, H.I. Koo, N.I. Cho, “Multi-lingual optical character recognition system using the reinforcement learning of character segmenter”, IEEE Access, vol. 8, pp. 174437-174448, 2020.
[8] Z. Khosrobeigi, H. Veisi, E. Hoseinzade, H. Shabanian, “Persian optical character recognition using deep bidirectional long short-term memory”, Applied Sciences, vol. 12, no. 22, p. 11760, 2022.
[9] M. Bonyani, S. Jahangard, M. Daneshmand, “Persian handwritten digit, character and word recognition using deep learning”, International Journal on document analysis and recognition (IJDAR), vol. 24, no. 1, pp. 133-143, 2021.
[10] S. Ahmadi, M. Agarwal, A. Anastasopoulos, “PALI: A Language Identification Benchmark for Perso-Arabic Scripts”, In Tenth Workshop on NLP for Similar Languages, Varieties and Dialects (VarDial). 2023.
[11] R. Azmi, E. Kabir, “A new segmentation technique for omnifont Farsi text”, Pattern Recognition Letters, vol. 22, no. 2, pp. 97-104, 2001.
[12] H. Khosravi, E. Kabir, “A blackboard approach towards integrated Farsi OCR system”, International Journal of Document Analysis and Recognition (IJDAR), vol. 12, pp. 21-32, 2009.
[13] V. Hajihashemi, M. M. A. Ameri, A. A. Gharahbagh, A. Bastanfard, “A pattern recognition based Holographic Graph Neuron for Persian alphabet recognition”, In 2020 Int. conf. on machine vision and image processing (MVIP), pp. 1-6. IEEE, 2020.
[14] V. Ghods, M.K. Sohrabi, “Online Farsi Handwritten Character Recognition Using Hidden Markov Model”, Journal of Computers, vol. 11, no. 2, pp. 169-175, 2016.
[15] J. Sadri, M.R. Yeganehzad, J. Saghi, “A novel comprehensive database for offline Persian handwriting recognition”, Pattern Recognition, vol. 60, p. 378, 2016.
[16] S. Khorashadizadeh, A. Latif, “Arabic/Farsi Handwritten Digit Recognition usin Histogra of Oriented Gradient and Chain Code Histogram”, Int. Arab Journal of Information Technology (IAJIT), vol. 13, no. 4, 2016.
[17] M.J. Parseh, M. Meftahi, “A new combined feature extraction method for Persian handwritten digit recognition”, International Journal of Image and Graphics, vol. 17, no. 2, p. 1750012, 2017.
[18] G. A. Montazer, H. Q. Saremi, V. Khatibi, “A neuro-fuzzy inference engine for Farsi numeral characters recognition”, Expert Systems with Applications, vol. 37, no. 9, pp. 6327-6337, 2010.
[19] M. Pourreza, R. Derakhshan, H. Fayyazi, M. Sabokrou, “Sub-word based Persian OCR using auto-encoder features and cascade classifier”, In 2018 9th International Symposium on Telecommunications (IST), pp. 481-485. IEEE, 2018.
[20] Z.A. Aghbari, S. Brook, “HAH manuscripts: A holistic paradigm for classifying and retrieving historical Arabic handwritten documents”, Expert Systems with Applications, vol. 36, no. 8, pp. 10942-10951, 2009.
[21] Y. A. Nanehkaran, D. Zhang, S. Salimi, J. Chen, Y. Tian, N. Al-Nabhan, “Analysis and comparison of machine learning classifiers and deep neural networks techniques for recognition of Farsi handwritten digits”, The Journal of Supercomputing, vol. 77, pp. 3193-3222, 2021.
[22] M. Parseh, M. Rahmanimanesh, P. Keshavarzi, “Persian handwritten digit recognition using combination of convolutional neural network and support vector machine methods”, The International Arab Journal of Information Technology, vol.17, no. 4, pp. 572-578, 2020.
[23] H. Xiang, Q. Zou, M. A. Nawaz, X. Huang, F. Zhang, H. Yu, “Deep learning for image inpainting: A survey”, Pattern Recognition, vol. 134, pp. 109046, 2023.
[24] S. Zhang, X. Lu, Z. Lu, “Improved CNN-based CatBoost model for license plate remote sensing image classification”, Signal Processing, vol. 213, p. 109196, 2023.
[25] S. Khosravi, A. Chalechale, “Chimp optimization algorithm to optimize a convolutional neural network for recognizing Persian/Arabic handwritten words”, Mathematical Problems in Engineering, vol. 1, p. 4894922, 2022.
[26] U. Hengaju, B. K. Bal, “Improving the Recognition Accuracy of Tesseract-OCR Engine on Nepali Text Images via Preprocessing”, Advancement in Image Processing and Pattern Recognition, vol. 3, no. 2, 3, pp. 40-52, 2023.
[27] M. M. Misgar, F. Mushtaq, S. S. Khurana, M. Kumar, “Recognition of offline handwritten Urdu characters using RNN and LSTM models”, Multimedia Tools and Applications, vol. 82, no. 2, pp. 2053-2076, 2023.
[28] A. Mars, K. Dabbabi, S. Zrigui, M. Zrigui, “Combination of DE-GAN with CNN-LSTM for Arabic OCR on Images with Colorful Backgrounds”, In International Conference on Computational Collective Intelligence, pp. 585-596. Cham: Springer Nature Switzerland, 2023.
[29] M. F. Y. Ghadikolaie, E. Kabir, F. Razzazi, “Sub‐word based offline handwritten farsi word recognition using recurrent neural network”, ETRI Journal, vol. 38, no. 4, pp. 703-713, 2016.
[30] R. Najam, S. Faizullah, “Analysis of recent deep learning techniques for Arabic handwritten-text OCR and Post-OCR correction”, Applied Sciences, vol. 13, no. 13, p. 7568, 2023.
[31] N. Ghanmi, A. Belhakimi, A. Awal, “CNN-BLSTM Model for Arabic Text Recognition in Unconstrained Captured Identity Documents”, In International Conference on Image Analysis and Processing, pp. 106-118. Cham: Springer Nature Switzerland, 2023.
[32] A. A. Pratama, M. D. Sulistiyo, A. F. Ihsan, “Balinese Script Handwriting Recognition Using Faster R-CNN”, Journal of RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 6, pp. 1268-1275, 2023.
[33] R. Mondal, S. Malakar, B. E.H. Smith, R. Sarkar, “Handwritten English word recognition using a deep learning based object detection architecture”, Multimedia Tools and Applications, vol. 81, pp. 975–1000, 2022.
[34] S. Alghyaline, “A Printed Arabic Optical Character Recognition System using Deep Learning”, Journal of Computer Science, vol. 18, no. 11, pp. 1038-1050, 2022.
[35] A. A. Demir, U. Ozkaya, “Ottoman character recognition on printed documents using deep learning”, Mühendislik Bilimleri ve Tasarım Dergisi, vol. 12, no. 2, pp. 392-402, 2024.
[36] X. Wang, S. Zheng, C. Zhang, R. Li, L. Gui, “R-YOLO: A real-time text detector for natural scenes with arbitrary rotation”, Sensors, vol. 21, no. 3, p. 888, 2021.
[37] D. Etter, S. Rawls, C. Carpenter, G. Sell, “A synthetic recipe for OCR”, In 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 864-869. IEEE, 2019.
[38] S. Hatami, S. Behnam, R. Shamsaee, “Improving detection of capsule endoscopy using YOLO”, Tabriz journal of electrical engineering, 2024, (In Persian), doi: 10.22034/tjee.2024.58239.4711.
[39] E. Zafarani-Moattar, M. R. Feizi-Derakhshi, A. Roohany, “The intelligent and automatic detection of type errors in large databases without using dictionary”, Tabriz journal of electrical engineering, vol. 47, no. 1, pp. 81-91, 2017, (In Persian)