مدل بازآرایی دو مرحله ای شبکه توزیع برای بهبود تاب‌آوری سیستم‌های توزیع با در نظرگرفتن شاخص ریسک

نوع مقاله : علمی-پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده فنی و مهندسی، دانشگاه شاهد، تهران، ایران

2 استاد، دانشیار، دانشکده فنی مهندسی، دانشگاه شاهد، تهران، ایران

چکیده

شبکه قدرت یکی از مهم ترین زیر ساخت های جوامع مدرن می باشد که نیازمند عملکرد ایمن و موثر است. به همین راستا، طراحی شبکه های قدرت باید بگونه ای باشد تا بتوانند در برابر قطعی برق مقاوم باشد. در این میان، بحث تاب آوری شبکه قدرت مطرح می گردد که هدف شبکه تاب آور وفق یافتن با رویدادهای پر خطر با احتمال وقوع کم مانند بلایای طبیعی سهمگین و حملات انسانی است. در این مقاله چارچوبی دو مرحله ای برای بهبود تاب آوری سیستم های توزیع با استفاده از بازآرایی شبکه و روش های کمی مبتنی بر ریسک پیشنهاد می شود که در مرحله اول پیش از وقوع حادثه با استفاده از شبیه ساز مونت کارلو و محاسبه ارزش در معرض خطر[1] و ارزش در معرض خطر مشروط[2] توپولوژی شبکه را به گونه ای تغییر دهد که احتمال قطع بار را کاهش دهد . در مرحله دوم، پس از حادثه و مشخص شدن خطوط قطع شده یک مرحله باز آرایی دیگر انجام شود تا قطع بار را به حداقل برساند که در این روش از الگوریتم ژنتیک استفاده شده است. مدل روی یک شبکه توزیع 33 باسه ارزیابی شده است و نتایج آن ارائه می‌شود.
 
[1] Value-at-risk (VaRα)
[2] Conditional Value-at-risk (VaRα)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Bi-Level Network Reconfiguration Model to Enhance the Resilience of Distribution Systems Considering Risk-Based INDEX

نویسندگان [English]

  • Reza Yusefvand 1
  • omid Safarzadeh 2
  • Reza Rahimifard 1
1 Department of power system, Faculty of Engineering, Shahed University, Tehran, Iran.
2 Department of power system, Faculty of Engineering, Shahed University, Tehran, Iran.
چکیده [English]

The power grid is one of the most important infrastructures of modern societies, which requires safe and effective operation. In this regard, the design of power networks should be such that they can be resistant to power outages. In the meantime, the discussion of the resilience of the power grid is raised. The goal of the resilient grid is to adapt to high-risk events with a low probability of occurrence, such as severe natural disasters and human attacks. In this paper, a two-stage framework is proposed to improve the resilience of distribution systems using network rearrangement with risk-based quantitative methods. The conditional risk value to change the network topology in such a way as to reduce the probability of load interruption. In the second step, after the accident and the identification of the interrupted lines, another re-arrangement step should be done to minimize the interruption of the load, in which the genetic algorithm is used. The model is evaluated on a 33-bus distribution network and its results are presented.

کلیدواژه‌ها [English]

  • Power distribution system
  • resilience
  • reconfiguration
  • conditional value at risk and recovery
[1]   A. Gholami. T. Shekari. M. H. Amirioun. F. Aminifar. M. H. Amini. and A. Sargolzaei. "Toward a consensus on the definition and taxonomy of power system resilience." IEEE Access. vol. 6. pp.32035-32053. 2018
[2]   N. Bhusal. M. Abdelmalak. M. Kamruzzaman. and M. Benidris. "Power system resilience: Current practices. challenges. and future directions." IEEE Access. vol. 8. pp. 18064-18086. 2020.
[3]   E. O. o. t. P. o. t. U. States. "Economic benefits of increasing electric grid resilience to weather outages." Exec Off Pres. August2013.
[4]   S. Küfeoğlu. S. Prittinen. and M. Lehtonen. "A summary of the recent extreme weather events and their impacts on electricity." Int. Rev. Electr. Eng. vol. 9. no. 4. pp. 821-828. 2014.
[6] M. Vaiman et al.. "Risk assessment of cascading outages: Methodologies and challenges." IEEE Transactions on Power Systems. vol. 27. no. 2. p. 631. 2012.
[7]   Y. Wang. C. Chen. J. Wang. and R. Baldick. "Research on resilience of power systems under natural disasters—A review." IEEE Transactions on Power Systems. vol. 31. no. 2. pp.1604.1613.2015
[8]   D. U. Case. "Analysis of the cyber attack on the Ukrainian power grid." Electricity Information Sharing and Analysis Center (E-ISAC). vol. 388. 2016
[9]   M. Panteli. C. Pickering. S. Wilkinson. R. Dawson. and P. Mancarella. "Power system resilience to extreme weather: fragility modeling. probabilistic impact assessment. and adaptation measures." IEEE Transactions on Power Systems. vol. 32. no. 5. pp.3747-3757. 2016.
[10] J. Li. X.-Y. Ma. C.-C. Liu. and K. P. Schneider. "Distribution system restoration with microgrids using spanning tree search." IEEE Transactions on Power Systems. vol. 29. no. 6. pp.3021.3029.2014.
[11] R. Pérez-Guerrero. G. T. Heydt. N. J. Jack. B. K. Keel. and A. R. Castelhano. "Optimal restoration of distribution systems using dynamic programming." IEEE Transactions on Power Delivery. vol.23. no. 3. pp. 1589-1596. 2008.
[12] S. Poudel. A. Dubey. and A. Bose. "Risk-based probabilistic quantification of power distribution system operational resilience." IEEE Systems Journal. vol. 14. no. 3. pp. 3506-3517. 2019.
[13] Y.-T. Hsiao and C.-Y. Chien. "Enhancement of restoration service in distribution systems using a combination fuzzy-GA method." IEEE Transactions on Power Systems. vol. 15. no. 4. pp.1394-1400. 2000.
 [14] M. E. Baran and F. F. Wu. "Network reconfiguration in distribution systems for loss reduction and load balancing." IEEE Power Engineering Review. vol. 9. no. 4. pp. 101-102. 2019
[15] L. Davis. "Handbook of Genetic Algorithms. Van Norstrand Reinhold. 1991." New York.
[16] Y. Fukuyama. H.-D. Chiang. and K. N. Miu. "Parallel genetic algorithm for service restoration in electric power distribution systems." International Journal of Electrical Power & Energy Systems. vol. 18. no. 2. pp. 111-119. 1996.
[17] S. A. Taher and M. H. Karimi. "Optimal reconfiguration and DG allocation in balanced and unbalanced distribution systems." Ain Shams Engineering Journal. vol. 5. no. 3. pp. 735-749. 2014.
[18] H. Aki. "Demand-side resiliency and electricity continuity: experiences and lessons learned in Japan." Proceedings of the IEEE. vol. 105. no. 7. pp. 1443-1455. 2017.
[19] R. T. Rockafellar and S. Uryasev. "Conditional value-at-risk for general loss distributions." Journal of banking & finance. vol. 26. no.7. pp. 1443-1471. 2002.
[20] R. T. Rockafellar and S. Uryasev. "Optimization of conditional value-at-risk." Journal of risk. vol. 2. pp. 21-42. 2000.
[21] M. S. Khomami, K. Jalilpoor, M. T. Kenari, and M. S. Sepasian, “Bi‐level network reconfiguration model to improve the resilience of distribution systems against extreme weather events,” IET Generation, Transmission & Distribution, vol. 13, no. 15, pp. 3302–3310, Jul. 2019, doi: https://doi.org/10.1049/iet-gtd.2018.6971.