ارائه یک نشانگر پاداش مثبت زیستی جدید مبتنی بر کپستروم ارزیابی شده در تشخیص بیماری پارکینسون

نوع مقاله : علمی-پژوهشی

نویسندگان

1 دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند، تبریز، ایران

2 عضو هیات علمی/گروه بیوالکتریک، دانشکده مهندسی پزشکی، دانشگاه صنعتی سهند

چکیده

پارکینسون یک بیماری سیستم عصبی مرکزی است که بر نورون های دوپامین در جسم سیاه اثر گذاشته و سبب اختلال در عملکردهای دوپامینرژیک مغز میانی می گردد. توسعه روشهای موثر تشخیص این بیماری جهت کنترل و مدیریت اختلالات ایجاد شده موثر می باشد. در روش های پیشین ارائه شده جهت تشخیص این بیماری، پیچیدگی محاسباتی یا هزینه تشخیص بالا بوده و یا مقاومت آنها در برابر پارامترهای کلینیکی و یا تفاوت های بین فردی پایین می باشد. از این رو در مقاله حاضر یک روش تشخیصی قابل اعتماد از طریق ارائه یک نشانگر زیستی پاداش مثبت با استفاده از تجزیه کپستروم سیگنال الکتروانسفالوگرام از طریق تفکیک اجزای نوسانس و تحریکی سیگنال و فراهم نمودن اطلاعات دامنه و فاز در عین کم نمودن تعداد ضرایب تحلیلی ارائه شده است. تحلیل کپستروم جهت استخراج نمایش موثرتری از اطلاعات طیفی سیگنال های گوسی-متناوب با استفاده از تفکیک منبع-فیلتر مورد استفاده قرار گرفته است. قابلیت این روش پیشنهادی با کمک داده های ثبت شده در حین اجرای تکلیف یادگیری تقویتی مربوط به 28 فرد بیمار در حالت با و بدون مصرف دارو و 28 فرد سالم مورد ارزیابی قرار گرفته است. روش پیشنهادی توانسته است به میانگین صحت 99/79 درصد به کمک ضرایب حقیقی کپستروم کاهش یافته به 250 ضریب از تعداد کل 4000 ضریب دست یابد. همچینی نتایج رضایت بخشی در هر دو حالت دارویی و لوب فرونتال در عین کاهش 85 درصدی تعداد کانال های موردبررسی، به دست آمده است که نشان دهنده کارایی، مقاومت و مقرون به صرفه بودن روش پیشنهادی می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A new Cepstral-based biomarker of reward positivity evaluated in Parkinson’s disease detection

نویسندگان [English]

  • Yasamin Ezazi 1
  • Peyvand Ghaderyan 2
1 Faculty of biomedical engineering_Sahand university of technology_Tabriz_Iran
2 Computational Neuroscience Laboratory, Faculty of Biomedical Engineering, Sahand University of Technology, Tabriz, Iran
چکیده [English]

Parkinson’s disease (PD) is one of the central nervous system disorders that affect dopaminergic neurons in the substantia nigra, leading to impairments in midbrain dopaminergic functions. The development of efficient detection is required to control the impairments. In previous PD detection works, either the detection cost or complexity is high or the robustness of the method to clinical parameters or individual differences is low. This article provides a reliable PD detection method proposing a new marker of reward positivity using a Cepstral decomposition of electroencephalogram (EEG) signals discriminating oscillation and excitation components and providing amplitude and phase information while minimizing the number of analyzed coefficients. Cepstral analysis has been used for extracting a more effective representation of spectral information of the quasi-periodic signals using source-filter separation. The capability of this method has been evaluated using 28 patients on both ON and OFF medication states and 28 healthy control individuals during the reinforcement-learning task. It has achieved an average accuracy rate of 99.79% by minimizing the real Cepstrum coefficients to 250 from 4000 ones. It has also obtained satisfactory results on medication states and frontal channels (85% channel reduction) indicating the efficiency, robustness, and cost-effectiveness of the method.

کلیدواژه‌ها [English]

  • Neurodegenerative disease
  • reinforcement-learning task
  • Cepstrum analysis
  • automatic diagnosis
  • EEG signal processing
  • machine learning
  1. Tysnes, O.-B. and A. Storstein, Epidemiology of Parkinson’s disease. Journal of Neural Transmission, 2017. 124(8): p. 901-905.
  2. Bhat, S., et al., Parkinson's disease: Cause factors, measurable indicators, and early diagnosis. Computers in biology and medicine, 2018. 102: p. 234-241.
  3. Oh, S.L., et al., A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Computing and Applications, 2018: p. 1-7.
  4. Loh, H.W., et al., Application of deep learning models for automated identification of Parkinson’s disease: a review (2011–2021). Sensors, 2021. 21(21): p. 7034.
  5. Lee, S., et al., A convolutional-recurrent neural network approach to resting-state EEG classification in Parkinsons disease. medRxiv, 2021.
  6. Emamzadeh-Hashemi, E.A., et al., Deep Transfer Learning for Parkinson’s Disease Monitoring by Image-Based Representation of Resting-State EEG Using Directional Connectivity. Algorithms, 2022. 15(1): p. 5.
  7. Khare, S.K., V. Bajaj, and U.R. Acharya, PDCNNet: An automatic framework for the detection of Parkinson’s Disease using EEG signals. IEEE Sensors Journal, 2021.
  8. Chang, K.-H., et al., Evaluating the Different Stages of Parkinson’s Disease Using Electroencephalography With Holo-Hilbert Spectral Analysis. Frontiers in aging neuroscience, 2022. 14.
  9. Lee, S.-B., et al., Predicting Parkinson's disease using gradient boosting decision tree models with electroencephalography signals. Parkinsonism & Related Disorders, 2022.
  10. Aljalal, M., et al., Parkinson’s Disease Detection from Resting-State EEG Signals Using Common Spatial Pattern, Entropy, and Machine Learning Techniques. Diagnostics, 2022. 12(5): p. 1033.
  11. Khoshnevis, S.A. and R. Sankar, Diagnosis of Parkinson’s disease using higher order statistical analysis of alpha and beta rhythms. Biomedical Signal Processing and Control, 2022. 77: p. 103743.
  12. Khare, S.K., V. Bajaj, and U.R. Acharya, Detection of Parkinson’s disease using automated tunable Q wavelet transform technique with EEG signals. Biocybernetics and Biomedical Engineering, 2021. 41(2): p. 679-689.
  13. Barua, P.D., et al., Novel automated PD detection system using aspirin pattern with EEG signals. Computers in biology and medicine, 2021. 137: p. 104841.
  14. Wang, S., et al. An EEG-based approach for Parkinson’s disease diagnosis using capsule network. in 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). 2022. IEEE.
  15. Kamalakannan, N., S.P.S. Balamurugan, and K. Shanmugam, A NOVEL APPROACH FOR THE EARLY DETECTION OF PARKINSON’S DISEASE USING EEG SIGNAL. Technology (IJEET), 2021. 12(5): p. 80-95.
  16. Guo, G. Diagnosing Parkinson’s Disease Using Multimodal Physiological Signals. in Human Brain and Artificial Intelligence: Second International Workshop, HBAI 2020: Held in Conjunction with IJCAI-PRICAI 2020, Yokohama, Japan, January 7, 2021: Revised Selected Papers. 2021. Springer.
  17. Silva, G., et al., Parkinson Disease Early Detection using EEG Channels Cross-Correlation. International Journal of Applied Engineering Research, 2020. 15(3): p. 197-203.
  18. Railo, H., et al., Resting state EEG as a biomarker of Parkinson's disease: Influence of measurement conditions. BioRxiv, 2020.
  19. Anjum, M.F., et al., Linear predictive coding distinguishes spectral EEG features of Parkinson's disease. Parkinsonism & Related Disorders, 2020. 79: p. 79-85.
  20. Bhurane, A.A., et al., Diagnosis of Parkinson's disease from electroencephalography signals using linear and self‐similarity features. Expert Systems, 2019: p. e12472.
  21. Yuvaraj, R., U.R. Acharya, and Y. Hagiwara, A novel Parkinson’s Disease Diagnosis Index using higher-order spectra features in EEG signals. Neural Computing and Applications, 2018. 30(4): p. 1225-1235.
  22. Liu, G., et al., Complexity analysis of electroencephalogram dynamics in patients with Parkinson’s disease. Parkinson’s Disease, 2017. 2017.
  23. Chaturvedi, M., et al., Quantitative EEG (QEEG) measures differentiate Parkinson's disease (PD) patients from healthy controls (HC). Frontiers in aging neuroscience, 2017. 9: p. 3.
  24. Chawla, P., et al., A decision support system for automated diagnosis of Parkinson’s disease from EEG using FAWT and entropy features. Biomedical Signal Processing and Control, 2023. 79: p. 104116.
  25. Desai, K., Parkinsons Disease Detection via Resting-State Electroencephalography Using Signal Processing and Machine Learning Techniques. arXiv preprint arXiv:2304.01214, 2023.
  26. Kurbatskaya, A., et al., Machine Learning-Based Detection of Parkinson's Disease From Resting-State EEG: A Multi-Center Study. arXiv preprint arXiv:2303.01389, 2023.
  27. Suuronen, I., et al., Budget-based classification of Parkinson's disease from resting state EEG. IEEE Journal of Biomedical and Health Informatics, 2023.
  28. Brown, D.R., S.P. Richardson, and J.F. Cavanagh, An EEG marker of reward processing is diminished in Parkinson’s disease. Brain research, 2020. 1727: p. 146541.
  29. Ezazi, Y. and P. Ghaderyan, Textural feature of EEG signals as a new biomarker of reward processing in Parkinson’s disease detection. Biocybernetics and Biomedical Engineering, 2022. 42(3): p. 950-962.
  30. Cavanagh, J.F., et al., The patient repository for EEG data+ computational tools (PRED+ CT). Frontiers in neuroinformatics, 2017. 11: p. 67.
  31. Shen, M., X. Zhang, and X. Li. Independent component analysis of electroencephalographic signals. in 6th International Conference on Signal Processing, 2002. 2002. IEEE.
  32. Walsh, M.M. and J.R. Anderson, Learning from experience: event-related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience & Biobehavioral Reviews, 2012. 36(8): p. 1870-1884.
  33. Cavanagh, J.F., et al., Cognitive states influence dopamine-driven aberrant learning in Parkinson's disease. Cortex, 2017. 90: p. 115-124.
  34. Ghaderyan, P. and A. Abbasi, A novel cepstral-based technique for automatic cognitive load estimation. Biomedical Signal Processing and Control, 2018. 39: p. 396-404.
  35. Benesty, J., M.M. Sondhi, and Y. Huang, Springer handbook of speech processing. Vol. 1. 2008: Springer.
  36. Huang, X., et al., Spoken language processing: A guide to theory, algorithm, and system development. 2001: Prentice hall PTR.
  37. Vanrell, S.R., D.H. Milone, and H.L. Rufiner, Assessment of homomorphic analysis for human activity recognition from acceleration signals. IEEE journal of biomedical and health informatics, 2017. 22(4): p. 1001-1010.
  38. Reddy, S.A., et al., EEG analysis of mathematical cognitive function and startle response using single channel electrode. CSI Transactions on ICT, 2020. 8(4): p. 367-376.
  39. Poorna, S.S., et al. EEG based control using spectral features. in 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC), 2018 2nd International Conference on. 2018. IEEE.
  40. Ghaderyan, P. and A. Abbasi, An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations. International Journal of Psychophysiology, 2016. 110: p. 91-101.
  41. de Oliveira, A.P.S., et al., Early diagnosis of Parkinson’s disease using EEG, machine learning and partial directed coherence. Research on Biomedical Engineering, 2020. 36(3): p. 311-331.
  42. Vapnik, V., The nature of statistical learning theory. 1999: Springer science & business media.
  43. Abe, S., Support vector machines for pattern classification. Vol. 2. 2005: Springer.
  44. Bridgelall, R., Tutorial on Support Vector Machines. 2022.
  45. Beyrami, S.M.G. and P. Ghaderyan, A robust, cost-effective and non-invasive computer-aided method for diagnosis three types of neurodegenerative diseases with gait signal analysis. Measurement, 2020. 156: p. 107579.
  46. Moghaddam, F., P. Ghaderyan, and M. Shamsi, Diagnosis of Attention Deficit/Hyperactivity Disorder using the analysis of different brain regions connectivity and Dynamic Time Warping method. TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 2023. 53(3): p. 223-233.
  47. Sha’abani, M., et al., kNN and SVM classification for EEG: a review. InECCE2019, 2020: p. 555-565.
  48. Cunningham, P. and S.J. Delany, k-Nearest neighbour classifiers: (with Python examples). arXiv preprint arXiv:2004.04523, 2020.
  49. Wang, S.-C., Artificial Neural Network, in Interdisciplinary Computing in Java Programming. 2003, Springer US: Boston, MA. p. 81-100.
  50. Warsito, B., R. Santoso, and H. Yasin. Cascade forward neural network for time series prediction. in Journal of Physics: Conference Series. 2018. IOP Publishing.
  51. Balakrishnama, S. and A. Ganapathiraju, Linear discriminant analysis-a brief tutorial. Institute for Signal and information Processing, 1998. 18(1998): p. 1-8.
  52. Narayan, Y., Hb vsEMG signal classification with time domain and Frequency domain features using LDA and ANN classifier. Materials Today: Proceedings, 2021. 37: p. 3226-3230.
  53. Pourezzat, M. and H. Danandeh Hesar, Development of a New Adaptive Method Based on Empirical Fourier Decomposition for the Diagnosis of Obstructive Sleep Apnea Using Electrocardiogram Signal Analysis. TABRIZ JOURNAL OF ELECTRICAL ENGINEERING, 2023. 53(3): p. 159-170.
  54. Ezazi, Y. and P. Ghaderyan, Parkinson’s disease detection using EEG signals analysis based on Walsh Hadamard transform. Intelligent Multimedia Processing and Communication Systems (IMPCS), 2021. 2(2): p. 1-8.