ادغام الگوریتم‌های بازار بورس، ملکه زنبور عسل و تکامل مختلط تصادفی برای بهینه‌سازی تابع چند متغیره

نوع مقاله : علمی-پژوهشی

نویسندگان

1 Department of Control Engineering, Faculty of Electrical and Computer Engineering, university of Tabriz

2 Department of Electronics, Carleton University, Ottawa, Canada

3 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran

چکیده

در این مقاله، سه الگوریتم فراابتکاری شناخته‌شده شامل الگوریتم بازار بورس، الگوریتم تکامل پیچ درهم و الگوریتم زنبور ملکه به منظور ارائه سه الگوریتم تکاملی ترکیبی جدید با نام‌های EMA-QB، EMA-SCE و EMA-SCE-QB مورد بررسی قرار گرفته‌اند. به‌منظور تحلیل و ارزیابی کارایی و اثربخشی این الگوریتم‌های ترکیبی، عملکرد آن‌ها با الگوریتم‌های EMA، SCEو QB در حل 12 تابع محک با تعداد متغیرهای ۱۰، ۲۰، ۳۰ و ۵۰ مقایسه شده است. نتایج نشان می‌دهد که ترکیب الگوریتم‌ها منجر به بهبود عملکرد در جستجوی نقطه بهینه از نظر دقت و زمان شده است، به‌گونه‌ای که این بهبود با افزایش تعداد متغیرها ملموس‌تر می‌شود. در نهایت، مجموع زمان اجرای الگوریتم‌ها، کمینه مقدار توابع هدف، و تعداد تکرارهای لازم برای بهینه‌سازی تمامی توابع مورد بررسی، در قالب چهار نمودار برای هر تعداد متغیر به تصویر کشیده شده‌اند که نشان‌دهنده موفقیت الگوریتم‌های ترکیبی پیشنهادی است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Integrating Exchange Market, Queen Bee, and Shuffled Complex Evolution Algorithms for Multi-variable Function Optimization

نویسندگان [English]

  • Mina Salim 1
  • Sima Hamedifar 2
  • Ali Asghar Lotfi 3
1 Department of Control Engineering, Faculty of Electrical and Computer Engineering, university of Tabriz
2 Department of Electronics, Carleton University, Ottawa, Canada
3 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

In this paper, three popular algorithms, including the Exchange Market Algorithm (EMA), the Shuffled Complex Evolution (SCE) algorithm, and the Queen Bee (QB) algorithm, are considered to propose three new hybrid evolutionary algorithms named EMA-QB, EMA-SCE, and EMA-SCE-QB. Then, to analyze and validate the effectiveness and efficiency of these new algorithms, we compared their performance with the performance of EMA, SCE, and QB algorithms on 12 benchmark functions with 10, 20, 30, and 50 variables. It is deduced that hybridization has presented a better performance in optimum seeking from both time and accuracy points of view, which become more distinctive as the number of variables grows. Finally, the sum of run times, minimum value of cost functions, and the number of iterations obtained from the procedure of optimization of all functions using the considered algorithms are illustrated in four graphs for each number of variables, which prove the success of the proposed hybrid algorithms.

کلیدواژه‌ها [English]

  • Hybrid algorithm
  • Exchange market algorithm
  • Queen bee algorithm
  • Shuffled complex evolution
[1] X.-S. Yang, "Nature-Inspired Optimization Algorithms", London: Elsevier, 2014.
[2] Q. Wei, Z. Guo, H. C. Lau, and Z. He, "An artificial bee colony-based hybrid approach for waste collection problem with midway disposal pattern, " Appl. Soft Comput., vol. 76, pp. 629–637, 2019.
[3] A. Kumar and S. Bawa, "A comparative review of meta-heuristic approaches to optimize the SLA violation costs for dynamic execution of cloud services", Soft Compute, vol. 24, pp. 3909–3922, 2020.
[4] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "A Grey wolf optimizer, "Adv Eng Softw, vol. 69, pp. 46–61, 2014.
[5] J.O. Kephart, "A biologically inspired immune system for computers", In: Artificial life IV: proceedings of the fourth international workshop on the synthesis and simulation of living systems, pp. 130–139, 1994.
[6] J. Greensmith and U. Aickelin, "The deterministic dendritic cell algorithm, " SSRN Electron. J., 2008.
[7] M. Yang and X. He, "Flower pollination algorithm: a novel approach for multi objective optimization, "Eng Optim, vol. 46, no. 9, pp. 1222–1237, 2014.
[8] XS. Yang , "Bat algorithm for multi-objective optimization", Int J Bio Inspir Comput , vol.  3, no. 5, pp.267–274, 2011.
[9] I. Fister Jr, X.-S. Yang, I. Fister, J. Brest, and D. Fister, "A brief review of nature-inspired algorithms for optimization, " arXiv [cs.NE], 2013.
[10] Ll. Yang, Wy. Qian, Q. Zhang , " Central force optimization", J Bohai Univ (Natural Science Edition) , vol. 32, no. 3, pp. 203–206, 2011.
[11] J. Holland , "Adoption in natural and artificial systems", University of Michigan Press, Michigan, 1975.
[12] S. H. Jung, "Queen-bee evolution for genetic algorithms," Electron Lett, vol. 39, no. 6, pp. 575–576, 2003.
[13] J. Kennedy , "Particle swarm optimization", In: Sammut C, Webb GI (eds) Encyclopedia of machine learning, Springer, Boston, MA, 2011.
[14] M. Dorigo and C. Blum, "Ant colony optimization theory: a survey", Theor Comput Sci, vol. 344, no. 2–3, pp. 243–278, 2005.
[15] M. Dorigo and D. Caro, “Ant colony optimization: a new meta-heuristic”, in Proceedings of the 1999 congress on evolutionary computation-CEC 99, vol. 2, IEEE, 1999, pp. 1470–1477.
[16] Q. Duan, V.K. Gupta, S. Sorooshian, " A shuffled complex evolution approach for effective and efficient global theory minimization", Journal of optimization and applications, vol.76, no. 3, pp. 501-521, 1993.
[17] N. Ghorbani, E. Babaei, "Exchange Market Algorithm," Applied Soft Computing, vol. 19, pp. 177-187, 2014.
[18] A. A. Taleizadeh, P. Pourrezaei Khalegi, I. Moon, "Hybrid NSGA-II for an imperfect production system considering product quality and returns under two warrenty policies," Applied Soft Computing Journal, vol. 75, pp. 333-348, 2018.
[19] Z. Zhang, S. Ding and W. Jia, "A hybrid optimization algorithm based on cuckoo search and differential evolution for solving constrained engineering problems," Engineering Applications of Artificial Intelligence, vol. 85, pp. 254-268, 2019.
[20] Y. Ding, K. Zhou and W. Bi, "Feature selection based on hybridization of genetic algorithm and competitive swarm optimizater", Soft Computing, 2020.
[21] M. A. Tawhid and A. M. Ibrahim, "A hybridization of grey wolf optimizer and differential evolution for solving nonlinear systems", Evol. Syst., vol. 11, no. 1, pp. 65–87, 2020.
[22] M.-T. Vakil-Baghmisheh and M. Salim, "The design of PID controllers for a Gryphon robot using four evolutionary algorithms: a comparative study", Artif. Intell. Rev., vol. 34, no. 2, pp. 121–132, 2010.
[23] D. L. Gonzalez-Alvarez, M. A. Vega-Rdriguez and A. Rubio-Largo, "Searching for common patterns of protein sequences by means of a parallel hybrid honey-bee mating optimization," Parallel Computing, vol. 76, pp. 1-17, 2018.
[24] A. S. Al-Araji, "An adaptive swing-up sliding mode controller design for a real inverted pendulim system based on Culture-Bees algorithm," European Journal of Control, vol. 45, pp. 45-56, 2018.
[25] A. Baniamerian, M. Bashiri and R. Tavakkoli-Moghaddam, "Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking," Applied Soft Computing Journal, vol. 75, pp. 441-460, 2018.
[26] S. C. and A. T., "Internet of medical things-load optimization of power flow based on hybrid enhanced grey wolf optimization and dragonfly algorithm," Future Generatin Computer Systems, vol. 98, pp. 319-330, 2019.
[27] H. Zhang, Q. Zhang, L. Ma, Z. Zhang and Y. Liu, "A hybrid ant colony optimization algorithm for a multi-objective vehicle routing problem with flexible time windows", Information Science, vol. 490, pp. 166-190, 2019.
[28] A. Rubio-Largo, M. A. Vega-Rodriguez and D. L. Gonzalez-Alvarez, "Hybrid multiobjective artificial bee colony for multiple sequence alignment", Applied Soft Computing, vol. 41, pp. 157-168, 2015.
[29] A. Rafiee, P. Moradi, A. Ghaderzadeh, "A Swarm Inteligence Based Multi-Lable Feature Selection Method Hybridized with a Local Search Strategy", Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 4, Winter 2021
[30] N. Ghorbani, E. Babaei and F. Sadikoglu, "BEMA: Binary Exchange Market Algorithm," Procedia Computer Science , vol. 120, pp. 656-663, 2017.
[31] N. Ghorbani, E. Babaei and F. Sadikoglu, "Exchange market algorithm for multi-objective economic emission dispatch and reliability," Procedia Computer Science, vol. 120, pp. 633-640, 2017.
[32] T. Dokeroglu, E. Sevinc and A. Cosar, "Artificial bee colony optimization for the quadratic assignment problem," Applied Soft Computing Journal, vol. 76, pp. 595-606, 2019.
[33] W. Hu, G. Wen, A. Rahmani and Y. Yu, "Distributed consensus tracking of unknown nonlinear chaotic delayd fractional-order multi-agent systems with external disturbances base on ABC algorithm", Commun Nonlinear Sci Numer Simulat, vol. 71, pp. 101-117, 2018.
[34] S. V. Devaraj et al., "Robust Queen Bee Assisted Genetic Algorithm (QBGA) Optimized Fractional Order PID (FOPID) Controller for Not Necessarily Minimum Phase Power Converters", in IEEE Access, vol. 9, pp. 93331-93337, 2021, doi: 10.1109/ACCESS.2021.3092215.
[35] M. T. Vakil-Baghmisheh and M. Salim, "A Modified Fast Marriage in Honey Bee Optimization Algorithm," 5th International Symposium on Telecommunications, pp. 950-955, 2010.
[36] S.Yurish, "Advances in Artificial Intelligence: Reviews", IFSA Publishing, 2019.
[37] Q. Duan, S. Sorooshian and V. Gupta, "Effective and Efficient Global Optimization for Conceptual Rainfall-Runoff Models", Water Esourcesr Esearc, vol. 28, no. 4, pp. 1015-1031, 1992.
[38] R. Dash, R. Rautray, and R. Dash, "Utility of a Shuffled Differential Evolution algorithm in designing of a Pi-Sigma Neural Network based predictor model", Appl. Comput. Inform., vol. 19, no. 1/2, pp. 22–40, 2023.
[39] V. C. Mariani, L. G. J. Luvizotto, F. A. Guerra and L. dos. S. Coelho, "A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization," Applied Mathematics and Computation, vol. 217, no. 12, pp. 5822-5829, 2011.
[40] C. Blum and A. Roli, "Hybrid Metaheuristics: An Introduction", Studies in Computational Intelligence (SCI), vol. 114, pp. 1–30 , 2008.
[41] A. F. Ali, M. A. Tawhid, "A hybrid particle swarm optimization and genetic algorithm with population partitioning for large-scale optimization problems", Ain Shams Engineering Journal, vol. 8, no. 2, pp. 191-206, 2017.
[42] S. Fidanova, M. Paprzycki and O. Roeva, "Hybrid GA-ACO Algorithm for a model parameters identification problem," in Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, 2014.
[43] E Mahdipour, M Ghasemzadeh, "A Hybrid Meta-heuristic Algorithm for High Performance Computing", Tabriz Journal of Electrical Engineering (TJEE), vol. 51, no. 1, Spring 2021
[44] X. Yu and Mitsuo,  "Introduction to evolutionary algorithms", 2010th ed. London, England: Springer, 2012.
[45] D. E. Goldberg, "Genetic algorithms in search, optimization, and machine learning", Boston, MA: Addison Wesley, 1989.