ارائه مدلی دوسطحی برای برنامه‌ریزی توسعه شبکه توزیع فشار ضعیف هم‌زمان با پایداری ولتاژ شبکه فشار متوسط

نوع مقاله : علمی-پژوهشی

نویسندگان

استادیار، گروه مهندسی برق، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران

چکیده

در این مقاله مدلی برای برنامه‌ریزی توسعه شبکه توزیع انرژی الکتریکی ارائه می‌شود که مبتنی بر مدل بهینه‌سازی دوسطحی بوده و قادر است تعارض بین شبکه فشار متوسط توزیع و شبکه فشار ضعیف توزیع را در سایز و جایابی بهینه ترانسفورماتورها برطرف نماید. در مدل پیشنهادی سطح بالا شبکه فشار متوسط و سطح پایین شبکه فشار ضعیف است. در واقع تعارض بین دو سطح این است که هر سطح تمایل دارد که مکان و سایز ترانسفورماتورها را مطابق میل خود تعیین کند. بنابراین، در این مقاله سعی شده است که با ارائه مدلی دوسطحی این تعارض که همان سایز و مکان ترانسفورماتورها است را برطرف نموده و به نقطه بهینه‌ای دست‌یافت که مطابق میل هر دو سطح باشد. تابع هدف سطح اول معیار پایداری ولتاژ و تابع هدف سطح دوم کاهش هزینه‌های بهره‌برداری و سرمایه‌گذاری با لحاظ کردن منابع تولید پراکنده است. از آنجا که مدل موردنظر غیرخطی است با استفاده از الگوریتم جستجوی ممنوعه با تجزیه مدل به دو زیر مسئله به حل آن پرداخته می‌شود. به‌منظور نشان دادن کارایی مدل پیشنهادی، در سه سناریو متفاوت مسئله موردنظر حل و مقایسه‌های لازم صورت می‌گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Bi-level Model for Low Voltage Distribution Network Planning Simultaneously with the Voltage Stability of Medium Voltage Network

نویسندگان [English]

  • A. Rastgou
  • S. Hosseini-Hemati
Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
چکیده [English]

In this paper, a model for distribution network expansion planning is presented, which is based on a bi-level model and can resolve the conflict between the medium and low voltage distribution networks in the size and optimal placement of transformers. In the proposed model, the upper and lower levels are medium and low voltage networks, respectively. The conflict between the two levels is that each network tends to determine the location and size of the transformers according to their wishes. Therefore, this paper has tried to solve this conflict, which is the size and location of transformers, by presenting a bi-level model, and to reach an optimal point that is in accordance with the desire of both levels. The objective function of the first level is the voltage stability criterion and the objective function of the second level is to reduce the operating and investment costs by considering distributed generations. Since the desired model is non-linear, it is solved using the tabu search by splitting the model into two sub-problems. To show the effectiveness of the proposed model, the problem is solved in three different scenarios and necessary comparisons have been made.

کلیدواژه‌ها [English]

  • Distribution network planning
  • bi-level programming
  • tabu search
  • voltage stability
[1] عبداله راستگو، جمال مشتاق، صلاح بهرام‌آرا، «ارائه رویکردی مقاوم و منعطف برای برنامه‌ریزی توسعه شبکه توزیع در حضور منابع تولید پراکنده و عدم‌قطعیت‌های بار، قیمت انرژی و منابع تجدیدپذیر»، مجله مهندسی برق دانشگاه تبریز، جلد 49، شماره 1، صفحات 165-180، 1398.
[2] نبی طاهری، رحمت الله هوشمند، رضا همتی، «برنامه‌ریزی هماهنگ نصب منابع تولید پراکنده و توسعه شبکه توزیع در حضور نامعینی بار و قیمت انرژی»، مجله مهندسی برق دانشگاه تبریز، جلد 44، شماره 1، صفحات 43-56، 1393.
[3] نبی طاهری، رحمت الله هوشمند، رضا همتی، «برنامه‌ریزی بلندمدت سیستم توزیع در سیستم قدرت تجدید ساختار یافته»، مجله مهندسی برق دانشگاه تبریز، جلد 43، شماره 2، صفحات 61-71، 1392.
[4] M. Kabirifar, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, N. Pourghaderi, and P. Dehghanian, “A bi-level framework for expansion planning in active power distribution networks,” IEEE Transactions on Power Systems, vol. 37, no. 4, pp. 2639–2654, 2021.
[5]  M. Moradijoz, M. P. Moghaddam, and M. Haghifam, “A flexible active distribution system expansion planning model: A risk-based approach,”Energy, vol. 145, pp. 442–457, 2018.
[6]  H. Wang, L. Shi, and Y. Ni, “A bi-level programming model for distribution network expansion planning with distributed generations and energy storage systems,” in 2018 IEEE Power & Energy Society General Meeting (PESGM), pp. 1–5, IEEE, 2018.
[7] T. Akbari and S. Z. Moghaddam, “Coordinated scheme for expansion planning of distribution networks: A bilevel game approach,” IET Generation, Transmission & Distribution, vol. 14, no. 14, pp. 2839–2846, 2020.
[8] M. Kabirifar, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, N. Pourghaderi, and M. Shahidehpour, “Reliability-based expansion planning studies of active distribution networks with multiagents,” IEEE Transactions on Smart Grid, vol. 13, no. 6, pp. 4610–4623, 2022.
[9]  M. Moradijoz, M. P. Moghaddam, and MR. Haghifam, “A flexible distribution system expansion planning model: a dynamic bi-level approach,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5867–5877, 2017.
[10]  A. Rastgou and S. Hosseini-Hemati, "Simultaneous Planning of the Medium and Low Voltage Distribution Networks under Uncertainty: A Bi-Level Optimization Approach", International Transactions on Electrical Energy Systems, vol. 2022, 2022.
[11]  A. Rastgou, S. Ghasemi, and S. Bahramara, "Providing a bi-level model for medium and low voltage distribution network expansion planning," Computational Intelligence in Electrical Engineering, vol. 11, no. 2, pp. 95-110, 2020.
[12] A. Bagheri, H. Monsef, and H. Lesani, “Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions,” International Journal of Electrical Power & Energy Systems, vol. 73, pp. 56–70, 2015.
[13] P. Paiva, H. Khodr, J. Dominguez-Navarro, J. Yusta, and A. Urdaneta, “Integral planning of primary-secondary distribution systems using mixed integer linear programming,” IEEE Transactions on Power systems, vol. 20, no. 2, pp. 1134–1143, 2005.
[14] A. Marcos and J. R. Sanches, “Integrated planning of electric power distribution networks”, IEEE Latin America Transactions, vol. 7, no. 2, pp. 203–210, 2009.
[15]  I. Ziari, G. Ledwich, and A. Ghosh, “Optimal integrated planning of mv–lv distribution systems using dpso,” Electric Power Systems Research, vol. 81, no. 10, pp. 1905–1914, 2011.
[16] I. Ziari, G. Ledwich, A. Ghosh, and G. Platt, “Integrated distribution systems planning to improve reliability under load growth”, IEEE transactions on Power Delivery, vol. 27, no. 2, pp. 757–765, 2012.
[17] R. Gholizadeh-Roshanagh, S. Najafi-Ravadanegh, and S. H. Hosseinian, “A framework for optimal coordinated primary-secondary planning of distribution systems considering mv distributed generation”, IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 1408–1415, 2016.
[18] محمدرضا فلاح زاده، علی زنگنه، «مدل برنامه‌ریزی دوسطحی پیشنهاددهی قیمت بهینه تجمیع‌کننده خودروهای الکتریکی در شبکه توزیع»، مجله مهندسی برق دانشگاه تبریز، جلد 48، شماره 4، صفحات 1699-1709، 1397.
[19] M. Chakravorty and D. Das, "Voltage stability analysis of radial distribution networks," International Journal of Electrical Power & Energy Systems, vol. 23, no. 2, pp. 129-135, 2001.
[20] A. Rastgou, J. Moshtagh, and S. Bahramara, "Improved harmony search algorithm for electrical distribution network expansion planning in the presence of distributed generators," Energy, vol. 151, pp. 178-202, 2018.
[21] Glover F. Tabu search fundamentals and uses. Boulder, Colorado: University of Colorado; 1995.