[1] C. Wang, H.X. Xu, Y. Wang, G. Hu, H. Luo, K. Wang, "Reconfigurable transmissive metasurface synergizing dynamic and geometric phase for versatile polarization and wavefront manipulations", Materials & Design, vol. 225, 111445, 2023.
[2] Y.i. Ren, T. Zhou, C. Jiang, B. Tang, "Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials", Optics Express, vol. 29, no. 5, pp. 7666-7679, 2021.
[3] B. Tang, Y. Ren, "Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide–graphene integrated configuration", Physical Chemistry Chemical Physics, vol. 24, no. 14, pp. 8408-8414, 2022.
[4] Z. Tang, L. Li, H. Zhang, J. Yang, J. Hu, X. Lu, Y. Hu, S. Qi, K. Liu, M. Tian, J. Jin, Z. Zhang, H. Lin, Y. Huang, "Multifunctional Janus metasurfaces achieving arbitrary wavefront manipulation at dual frequency", Materials & Design, vol. 223, 111264, 2022.
[5] Z. Zhang, W. Xiang Jiang, X. Ge Zhang, W. Kang Cao, L. Bai, C.W. Qiu, T. Jun Cui, "Efficient digital metasurfaces for full-space manipulation of acoustic waves with low crosstalk between reflection and transmission", Materials & Design, vol. 229, 111903, 2023.
[6] B. Rezaee Rezvan, M. Yazdi, S. E. Hosseininejad, "A 2-bit programmable metasurface for dynamic beam steering applications", Tabriz Journal of Electrical Engineering, vol. 51, no. 2, pp. 277-284, 2021.
[7] W. Liu, Z. Song, "Terahertz absorption modulator with largely tunable bandwidth and intensity", Carbon, vol. 174, pp. 617-624, 2021.
[8] X. Luo, M. Pu, Y. Guo, X. Li, X. Ma, "Electromagnetic architectures: Structures, properties, functions and their intrinsic relationships in subwavelength optics and electromagnetics", Advanced Photonics Research, vol. 2, no. 10, 2100023, 2021.
[9] M.S. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M.J. Nine, A. Dinovitser, C.M. B. Cordeiro, B.W.H. Ng, D. Abbott, "Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing", Carbon, vol. 158, pp. 559-567, 2020.
[10] W.W. Liu, Z.Y. Song, "Terahertz absorption modulator with largely tunable bandwidth and intensity", Carbon, vol. 174, pp. 617-624, 2021.
[11] M. M. Fakharian, "Design of a graphene-based multi-band metamaterial perfect absorber with polarization-insensitive ability for terahertz applications", Journal of Modeling in Engineering, vol. 20, no. 69, pp. 93-102, 2022.
[12] G.C. Ma, M. Yang, S.W. Xiao, Z.Y. Yang, P. Sheng, "Acoustic metasurface with hybrid resonances", Nature Materials, vol. 13, no. 9, pp. 873-878, 2014.
[13] J. Lee, M. Tymchenko, C. Argyropoulos, P.Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.C. Amann, A. Alu, M.A. Belkin, "Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions", Nature, vol. 511, no. 7507, pp. 65-69, 2014.
[14] H.A. Qi, B. Tang, "An active tunable terahertz functional metamaterial based on hybrid-graphene vanadium dioxide", Physical Chemistry Chemical Physics, vol. 25, no. 11, pp. 7825-7831, 2023.
[15] M. Vasoujouybari, E. Ataie, M. Bastam, "An MLP-based deep learning approach for detecting DDoS attacks", Tabriz Journal of Electrical Engineering, vol. 52, no. 3, pp. 195-204, 2022.
[16] M. A. Bessa, P. Glowacki, M. Houlder, "Bayesian machine learning in metamaterial design: Fragile becomes supercompressible", Advanced Materials, vol. 31, no. 48, 1904845, 2019.
[17] V. L. Deringer, M. A. Caro, G. Csányi, "Machine learning interatomic potentials as emerging tools for materials science", Advanced Materials, vol. 31, no. 46, 1902765, 2019.
[18] Z. Ding, Wei Su, Y. Luo, L. Ye, H. Wu, H. Yao, "Machine learning in design of broadband terahertz absorbers based on composite structures", Materials & Design, vol. 233, 112215, 2023.
[19] Z. Ding, W. Su, Y. Luo, L. Ye, H. Wu and H. Yao, "Design of an ultra-broadband terahertz absorber based on a patterned graphene metasurface with machine learning", Journal of Materials Chemistry C, vol. 11, pp. 5625-5633, 2023.
[20] K. Achouri, B. A. Khan, S. Gupta, G. Lavigne, M. A. Salem, and C. Caloz, "Synthesis of electromagnetic metasurfaces: Principles and illustrations", EPJ Applied Metamaterials, vol. 2, no. 12, pp. 1-11, 2015.
[21] D. Yan, "Tunable all-graphene-dielectric single-band terahertz wave absorber", Journal of Physics D: Applied Physics, vol. 52, 275102, 2019.
[22] G. Zheng, H. M. Hlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency", Nature Nanotechnol, vol. 10, no. 4, pp. 308-312, 2015.
[23] B. Lariviere, D. Van den Poel, "Predicting customer retention and profitability by using random forests and regression forests techniques", Expert Systems with Applications, vol. 29, no. 2, pp. 472-484, 2005.
[24] A. Prinzie, D. Van den Poel, "Random forests for multiclass classification: Random MultiNomial Logit", Expert Systems with Applications, vol. 34, no. 3, pp. 1721-1732, 2008.
[25] Liu Y, Wang Y, Zhang J. "New Machine Learning Algorithm: Random Forest", International Conference on Information Computing and Applications, pp. 246–52, 2012.
[26] P. Ranjan, A. Maurya, G. H. Swati Yadav, A. Sharma "Ultra-wideband CPW fed band-notched monopole antenna optimization using machine learning", Progress In Electromagnetics Research M, vo. 108, pp. 27–38, 2022.
[27] S. K. Patel, J. Surve, V. Katkar, J. Parmar, "Machine learning assisted metamaterial-based reconfigurable antenna for low-cost portable electronic devices", Scientific Reports, vol. 12, pp. 1-13, 2022.
[28] P. Jain, H. Chhabra, U. Chauhan, D. K. Singh, T. M. K. Anwer, S. H. Ahammad, M. A. Hossain, A. N. Z. Rashed, "Multiband Metamaterial absorber with absorption prediction by assisted machine learning", Materials Chemistry and Physics, vol. 307, 128180, 2023.
[29] S. K. Patel, J. Parmar, V. Katkar, F. A. Al-Zahrani, K. Ahmed, "Ultra-broadband and polarization-insensitive metasurface absorber with behavior prediction using machine learning", Alexandria Engineering Journal, vol. 61, pp. 10379-10393, 2022.