طراحی یک جاذب فراسطحی تراهرتز بر پایه تکنیک یادگیری ماشین

نوع مقاله : علمی-پژوهشی

نویسنده

استادیار، دانشکده فنی و مهندسی، دانشگاه گرمسار، گرمسار، ایران

چکیده

توسعه جاذب‌های فراسطحی راه‌حل‌ بالقوه‌ای برای دستیابی به وزن کم، ضخامت نازک، نرخ جذب مطلوب و ویژگی‌های قابل قبول جذب امواج تراهرتز ، ارائه می‌دهد. به منظور بهینه‌سازی خواص جذب فراسطح‌ها، معمولاً از طیف جذب به عنوان یک معیار ارزیابی مهم استفاده میشود که می‌تواند بسیاری از ویژگی‌های مهم مانند مقدار جذب در فرکانس‌های مختلف را نشان دهد. اما، تحلیل طیف‌های جذب، به تعداد زیادی پارامترهای ساختاری وابسته است که منابع و زمان زیادی را مصرف می‌کند، زیرا جذب موج الکترومغناطیسی شامل فرآیندهای تطبیق امپدانس مختلط و تحریک میدان الکتریکی است. برای پرداختن به این موضوع، این تحقیق یک رویکرد یادگیری ماشین مبتنی بر الگوریتم جنگل تصادفی را برای پیش‌بینی نرخ جذب بر اساس پارامترهای ساختاری پیشنهاد می‌کند و نیاز به شبیه‌سازی عددی و زمان تجزیه و تحلیل طیف را کاهش می‌دهد. با مدل جنگل تصادفی، نرخ جذب با امتیاز R2 بیش از 99/0پیش‌بینی می‌شود. علاوه بر این، طرح جاذب پیشنهادی دارای مزایای نازک بودن، غیرحساس بودن به پلاریزاسیون و با زاویه برخورد نسبتاً پایدار به واسطه تقارن ساختار است. این مطالعه یک رویکرد عملی و موثر برای طراحی سیستم‌های پیچیده مرتبط با انتشار موج الکترومغناطیسی جاذب، بازتاب و انتقال ارائه می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of a Terahertz Metasurface Absorber Based on Machine Learning Technique

نویسنده [English]

  • M. M. Fakharian
Faculty of Engineering, University of Garmsar, Garmsar, Iran
چکیده [English]

The development of metasurface absorbers offers a potential solution to achieve low weight, thin thickness, favorable absorption rate, and acceptable terahertz absorption characteristics. In order to optimize the absorption properties of metasurfaces, the absorption spectrum is usually used as an important evaluation criterion, which can show many important characteristics such as the rate of absorption at different frequencies. However, the analysis of absorption spectra related to a large number of variable structural parameters is required when designing the structure, which consumes a lot of resources and time, because electromagnetic wave absorption involves the processes of complex impedance matching and electric field excitation. To address this issue, this study proposes a machine learning approach based on a random forest algorithm to predict absorption rates based on structural parameters, reducing the need for numerical simulation and spectrum analysis time. With the random forest model, the absorption rate is predicted with the R2 score of more than 0.99. In addition, the proposed absorber design has the advantages of being thin, insensitive to polarization and with a relatively stable incident angle, due to the symmetry of the structure. This study presents a practical and effective approach for the design of complex systems related to absorbing, reflecting and transmitting electromagnetic wave propagation.

کلیدواژه‌ها [English]

  • Absorber
  • Metasurface design
  • Terahertz
  • Machine learning
  • Random forest algorithm
[1] C. Wang, H.X. Xu, Y. Wang, G. Hu, H. Luo, K. Wang, "Reconfigurable transmissive metasurface synergizing dynamic and geometric phase for versatile polarization and wavefront manipulations", Materials & Design, vol. 225, 111445, 2023.
[2]  Y.i. Ren, T. Zhou, C. Jiang, B. Tang, "Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials", Optics Express, vol. 29, no. 5, pp. 7666-7679, 2021.
[3]  B. Tang, Y. Ren, "Tunable and switchable multi-functional terahertz metamaterials based on a hybrid vanadium dioxide–graphene integrated configuration", Physical Chemistry Chemical Physics, vol. 24, no. 14, pp. 8408-8414, 2022.
[4]   Z. Tang, L. Li, H. Zhang, J. Yang, J. Hu, X. Lu, Y. Hu, S. Qi, K. Liu, M. Tian, J. Jin, Z. Zhang, H. Lin, Y. Huang, "Multifunctional Janus metasurfaces achieving arbitrary wavefront manipulation at dual frequency", Materials & Design, vol. 223, 111264, 2022.
[5]   Z. Zhang, W. Xiang Jiang, X. Ge Zhang, W. Kang Cao, L. Bai, C.W. Qiu, T. Jun Cui, "Efficient digital metasurfaces for full-space manipulation of acoustic waves with low crosstalk between reflection and transmission", Materials & Design, vol. 229, 111903, 2023.
[6]   B. Rezaee Rezvan, M. Yazdi, S. E. Hosseininejad, "A 2-bit programmable metasurface for dynamic beam steering applications", Tabriz Journal of Electrical Engineering, vol. 51, no. 2, pp. 277-284, 2021.
 [7] W. Liu, Z. Song, "Terahertz absorption modulator with largely tunable bandwidth and intensity", Carbon, vol. 174, pp. 617-624, 2021.
[8] X. Luo, M. Pu, Y. Guo, X. Li, X. Ma, "Electromagnetic architectures: Structures, properties, functions and their intrinsic relationships in subwavelength optics and electromagnetics", Advanced Photonics Research, vol. 2, no. 10, 2100023, 2021. 
[9]   M.S. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M.J. Nine, A. Dinovitser, C.M. B. Cordeiro, B.W.H. Ng, D. Abbott, "Tunable localized surface plasmon graphene metasurface for multiband superabsorption and terahertz sensing", Carbon, vol. 158, pp. 559-567, 2020.
[10] W.W. Liu, Z.Y. Song, "Terahertz absorption modulator with largely tunable bandwidth and intensity", Carbon, vol. 174, pp. 617-624, 2021.
[11] M. M. Fakharian, "Design of a graphene-based multi-band metamaterial perfect absorber with polarization-insensitive ability for terahertz applications", Journal of Modeling in Engineering, vol. 20, no. 69, pp. 93-102, 2022.
 [12]  G.C. Ma, M. Yang, S.W. Xiao, Z.Y. Yang, P. Sheng, "Acoustic metasurface with hybrid resonances", Nature Materials, vol. 13, no. 9, pp. 873-878, 2014.
[13]  J. Lee, M. Tymchenko, C. Argyropoulos, P.Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.C. Amann, A. Alu, M.A. Belkin, "Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions", Nature, vol. 511, no. 7507, pp. 65-69, 2014.
[14] H.A. Qi, B. Tang, "An active tunable terahertz functional metamaterial based on hybrid-graphene vanadium dioxide", Physical Chemistry Chemical Physics, vol. 25, no. 11, pp. 7825-7831, 2023.
[15] M. Vasoujouybari, E. Ataie, M. Bastam, "An MLP-based deep learning approach for detecting DDoS attacks", Tabriz Journal of Electrical Engineering, vol. 52, no. 3, pp. 195-204, 2022.
[16] M. A. Bessa, P. Glowacki, M. Houlder, "Bayesian machine learning in metamaterial design: Fragile becomes supercompressible", Advanced Materials, vol. 31, no. 48, 1904845, 2019.
[17] V. L. Deringer, M. A. Caro, G. Csányi, "Machine learning interatomic potentials as emerging tools for materials science", Advanced Materials, vol. 31, no. 46, 1902765, 2019.
[18] Z. Ding, Wei Su, Y. Luo, L. Ye, H. Wu, H. Yao, "Machine learning in design of broadband terahertz absorbers based on composite structures", Materials & Design, vol. 233, 112215, 2023.
[19] Z. Ding, W. Su, Y. Luo, L. Ye, H. Wu and H. Yao, "Design of an ultra-broadband terahertz absorber based on a patterned graphene metasurface with machine learning", Journal of Materials Chemistry C, vol. 11, pp. 5625-5633, 2023.
[20] K. Achouri, B. A. Khan, S. Gupta, G. Lavigne, M. A. Salem, and C. Caloz, "Synthesis of electromagnetic metasurfaces: Principles and illustrations", EPJ Applied Metamaterials, vol. 2, no. 12, pp. 1-11, 2015.
[21] D. Yan, "Tunable all-graphene-dielectric single-band terahertz wave absorber", Journal of Physics D: Applied Physics, vol. 52, 275102, 2019.
[22] G. Zheng, H. M. Hlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, "Metasurface holograms reaching 80% efficiency", Nature Nanotechnol, vol. 10, no. 4, pp. 308-312, 2015.
[23] B. Lariviere, D. Van den Poel, "Predicting customer retention and profitability by using random forests and regression forests techniques", Expert Systems with Applications, vol. 29, no. 2, pp. 472-484, 2005.
[24] A. Prinzie, D. Van den Poel, "Random forests for multiclass classification: Random MultiNomial Logit", Expert Systems with Applications, vol. 34, no. 3, pp. 1721-1732, 2008.
[25] Liu Y, Wang Y, Zhang J. "New Machine Learning Algorithm: Random Forest", International Conference on Information Computing and Applications, pp. 246–52, 2012.
[26] P. Ranjan, A. Maurya, G. H. Swati Yadav, A. Sharma "Ultra-wideband CPW fed band-notched monopole antenna optimization using machine learning", Progress In Electromagnetics Research M, vo. 108, pp. 27–38, 2022.
[27] S. K. Patel, J. Surve, V. Katkar, J. Parmar, "Machine learning assisted metamaterial-based reconfigurable antenna for low-cost portable electronic devices", Scientific Reports, vol. 12, pp. 1-13, 2022.
[28] P. Jain, H. Chhabra, U. Chauhan, D. K. Singh, T. M. K. Anwer, S. H. Ahammad, M. A. Hossain, A. N. Z. Rashed, "Multiband Metamaterial absorber with absorption prediction by assisted machine learning", Materials Chemistry and Physics, vol. 307, 128180, 2023.
[29] S. K. Patel, J. Parmar, V. Katkar, F. A. Al-Zahrani, K. Ahmed, "Ultra-broadband and polarization-insensitive metasurface absorber with behavior prediction using machine learning", Alexandria Engineering Journal, vol. 61, pp. 10379-10393, 2022.