ارزیابی قابلیت اطمینان سیستم قدرت با در نظر گرفتن عدم هماهنگی سیستم حفاظتی ناشی از تغییر ساختار

نوع مقاله : علمی-پژوهشی

نویسندگان

1 برق قدرت، دانشکده مهندسی برق و کامپیوتر، دانشگاه بیرجند، شهر بیرجند، ایران

2 برق قدرت؛ دانشکده مهندسی برق و کامپیوتر؛ دانشگاه بیرجند: بیرجند: ایران

3 برق قدرت، مهندسی برق، دانشگاه زنجان، زنجان، ایران

چکیده

عملکرد سیستم‌های حفاظتی نقش مهمی در قابلیت اطمینان سیستم‌های قدرت دارد. خرابی و عملکرد نادرست سیستم‌های حفاظتی باعث خروج تجهیزات سالم و به دنبال آن خروج بارهای شبکه و خاموشی می‌شود. تغییر ساختار و یا خروج تجهیزات شبکه یکی از عوامل تأثیرگذار بر عملکرد سیستم‌های حفاظتی در هنگام وقوع خطا است. تغییر ساختارناشی از خروج برنامه ریزی شده و برنامه ریزی نشده تجهیزات سیستم قدرت و تغییرات دینامیکی ساختار، موجب تغییر سطح اتصال کوتاه و جریان‌های خطا می‌شود. تغییر سطح اتصال کوتاه بر روی عملکرد رله‌های حفاظتی تاثیر گذاشته و می‌تواند باعث عدم هماهنگی سیستم حفاظتی شود و در نتیجه منجر به خروج بعضی از بارها و کاهش قابلیت اطمینان سیستم قدرت گردد. این مقاله مدل مارکوف جدیدی به منظور مدلسازی خرابی و عدم هماهنگی سیستم‌های حفاظتی ناشی از خروج تجهیزات پیشنهاد کرده است. همچنین شاخص جدیدی جهت تعیین میزان عدم هماهنگی سیستم‌های حفاظتی معرفی شده است. با استفاده از روش مونت کارلوی ترتیبی، مدل مارکوف ارائه شده بر روی شبکه 24 باسه IEEE RTS پیاده‌سازی شده است. شاخص‌های قابلیت اطمینان نظیر احتمال قطع بار (LOLP)، متوسط خروج بار (LOLE)، متوسط تعداد قطع بار (EFLC( و متوسط انرژی تأمین نشده (EENS) برای چهار سناریو با سطوح عدم هماهنگی مختلف به دست آمده است. مقایسه نتایج نشان می‌دهد که چگونه عدم هماهنگی سیستم حفاظتی شاخص‌های قابلیت اطمینان را کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Power System Reliability Evaluation Considering Protection Miscoordination due to Topology Change

نویسندگان [English]

  • saeed sabzebin 1
  • Abbas Saberi Noghabi 2
  • Kazem Mazlumi 3
1 Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
2 Department of Electrical and Computer Engineering, University of Birjand, Birjand, Iran
3 Department of Electrical Engineering, University of Zanjan, Zanjan, Iran
چکیده [English]

Protection system operation has a vital role in power system reliability. The protection system failure and incorrect operation may cause cascading outages. In case of fault, one of the effective causes of protection system mal-operation is the change in network topology. Network topology changes due to scheduled and unscheduled outages of power system components and dynamic changes in topology cause a change in the short circuit current of the network. The change in short circuit current affects protection relay operation and can lead to protection miscoordination which results in an outage of some loads and degradation of power system reliability indices. This paper proposes a novel Markov model including the miscoordination of the protection system due to component outages. In addition, a new index is proposed for protection miscoordination. A sequential Monte Carlo simulation approach is used to implement the proposed Markov model on a 24-bus IEEE reliability test system. The reliability indices, such as loss of load probability (LOLP), loss of load expectation (LOLE), expected frequency of load curtailment (EFLC), and expected energy not supplied (EENS), are obtained for four scenarios with different miscoordination levels and compared to show how the protection miscoordination degrades the reliability indices.

کلیدواژه‌ها [English]

  • Power system reliability
  • Markov chain Monte Carlo
  • protection failure
  • protection miscoordination
[1] S. H. Horowitz and A. G. Phadke, Power System Relaying: Third Edition. 2008.
[2] J. Zhang, M. Ding, X. Qi, and Y. Guo, “Research on Hidden Failure Reliability Modeling of Electric Power System Protection,” Energy Power Eng, vol. 5, no. 4, pp. 1377–1382, 2013.
[3] K. R. Timalsena, P. Piya, and R. Karki, “A Novel Methodology to Incorporate Circuit Breaker Active Failure in Reliability Evaluation of Electrical Distribution Networks,” IEEE Trans Power Syst, vol. 36, no. 2, pp. 1013–1022, 2021.
[4] M. Eliassi, H. Seifi, and M. R. Haghifam, “Incorporation of protection system failures into bulk power system reliability assessment by Bayesian networks,” IET Gener Transm Distrib, vol. 9, no. 11, pp. 1226–1234, 2015.
[5] R. Hu, “Cascading Failure Risk Assessment Considering Protection System Hidden Failures,” Int J Mech Eng Appl, vol. 4, no. 2, pp. 50–58, 2016.
[6] R. N. Allan, “Effects of protection systems operation and failures in composite system reliability evaluation,” International Journal of Electrical Power and Energy Systems, vol. 10, no. 3. pp. 180–189, 1988.
[7] M. Zeynivand and S. M. Shahrtash, “Direct identification of Multi-Hidden failures in main distance relays of transmission systems,” Int J Electr Power Energy Syst, vol. 146, p. 108722, 2023.
[8] M. Gilvanejad, H. A. Abyaneh, and K. Mazlumi, “Fuse cutout allocation in radial distribution system considering the effect of hidden failures,” Int J Electr Power Energy Syst, vol. 42, no. 1, pp. 575–582, 2012.
[9] H. Hashemi-Dezaki, S. M. M. Agah, H. Askarian-Abyaneh, and H. Haeri-Khiavi, “Sensitivity analysis of smart grids reliability due to indirect cyber-power interdependencies under various DG technologies, DG penetrations, and operation times,” Energy Convers Manag, vol. 108, pp. 377–391, 2016.
[10] K. Jiang and C. Singh, “New models and concepts for power system reliability evaluation including protection system failures,” IEEE Trans Power Syst, vol. 26, no. 4, pp. 1845–1855, 2011.
[11] P. M. Anderson, G. M. Chintaluri, S. M. Magbuhat, and R. F. Ghajar, “An improved reliability model for redundant protective systems, Markov models,” IEEE Power Eng Rev, vol. 17, no. 5, pp. 53–54, 1997.
[12] C. Singh and A. D. Patton, “Protection System Reliability Modeling: Unreadiness Probability and Mean Duration of Undetected Faults,” IEEE Trans Reliab, vol. R-29, no. 4, pp. 339–340, 1980.
[13] P. M. Anderson and S. K. Agarwal, “An Improved Model for Protective-System Reliability,” IEEE Trans Reliab, vol. 41, no. 3, pp. 422–426, 1992.
[14] X. Yu and C. Singh, “A practical approach for integrated power system vulnerability analysis with protection failures,” IEEE Trans Power Syst, vol. 19, no. 4, pp. 1811–1820, 2004.
[15] R. Billinton, M. Fotuhi-Firuzabad, and T. S. Sidhu, “Determination of the optimum routine test and self-checking intervals in protective relaying using a reliability model,” IEEE Trans Power Syst, vol. 17, no. 3, pp. 663–669, 2002.
[16] H. Lei and C. Singh, “Power system reliability evaluation considering cyber-malfunctions in substations,” Electr Power Syst Res, vol. 129, no. December, pp. 160–169, 2015.
 
 
[17] L. Zhao, X. Li, M. Ni, T. Li, and Y. Cheng, “Review and prospect of hidden failure: protection system and security and stability control system,” J Mod Power Syst Clean Energy, vol. 7, no. 6, pp. 1735–1743, 2019.
[18] H. Karimkhan Zand, K. Mazlumi, and A. Bagheri, “A new approach to the setting of directional overcurrent relays by incorporating cascading outages,” Sci Iran, vol. 29, no. 3, pp. 1562–1572, 2022.
[19] E. Sorrentino and J. V. Rodríguez, “Optimal coordination of directional overcurrent protections considering the occurrence probability of different configurations and the effect of grouping cases,” Electr Power Syst Res, vol. 218, p. 109163, 2023.
[20] O. Merabet, M. Bouchahdane, H. Belmadani, A. Kheldoun, and A. Eltom, “Optimal coordination of directional overcurrent relays in complex networks using the Elite marine predators algorithm,” Electr Power Syst Res, vol. 221, p. 109446, 2023.
[21] N. Hatefi Torshizi, H. Najafi and A. Saberi Noghabi, “Improving Coordination and Operating Speed of Overcurrent Relay against Contingency of Presence of Distributed Generators,” Tabriz Journal of Electrical Engineering, vol. 51, no 1, pp. 33-47, 2021.  
[22] A. Saberi Noghabi, H. Badrsimaei, and M. Farshad, “A Probabilistic Method to Determine the Optimal Setting of Combined Overcurrent Relays considering Uncertainties,” Tabriz Journal of Electrical Engineering, vol. 47, no. 1, pp. 141-153, 2017.
[23] K. Mazlumi and H. A. Abyaneh, “Relay coordination and protection failure effects on reliability indices in an interconnected sub-transmission system,” Electr Power Syst Res, vol. 79, no. 7, pp. 1011–1017, 2009.
[24] M. Jazaeri, M. Farzinfar, and F. Razavi, “Evaluation of the impacts of relay coordination on power system reliability,” Int Trans Electr Energy Syst, vol. 25, no. 12, pp. 3408–3421, 2015.
[25] A. M. Nakhaee, S. A. Hosseini, S. H. H. Sadeghi and A. Nasiri, “A Framework for Assessing the Impact of Operational Uncertainties on the Reliability of Adaptive Microgrid Protection Schemes,” Arabian Journal for Science and Engineering, vol. 48, no. 5, pp. 6293-6306, 2023.
[26] A. S. Noghabi, H. R. Mashhadi, and J. Sadeh, “Optimal Coordination of Directional Overcurrent Relays Considering Different Network Topologies Using Interval Linear Programming,” IEEE Trans Power Deliv, vol. 25, no. 3, pp. 1348–1354, Jul. 2010.
[27] A. J. Urdaneta, L. G. Perez, and H. Restrepo, “Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology,” IEEE Trans Power Deliv, vol. 12, no. 4, pp. 1458–1464, 1997.
[28] R. Y. Rubinstein and D. P. Kroese, “Simulation and the Monte Carlo Method: Third Edition,” Simulation and the Monte Carlo Method: Third Edition. pp. 1–414, 2016.
[29] M. R. Bhuiyan and R. N. Allan, “Modelling multistate problems in sequential simulation of power system reliability studies,” IEE Proc Gener Transm Distrib, vol. 142, no. 4, pp. 343–349, 1995.
[30] P. M. Subcommittee, “IEEE Reliability Test System,” IEEE Trans Power Appar Syst, vol. PAS-98, no. 6, pp. 2047–2054, Nov. 1979.