Modeling of the non-uniform distributed GaN QDs based Infrared Photodetector

نوع مقاله : علمی-پژوهشی

نویسندگان

1 Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran

2 Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz 55165-163, Iran

3 گروه الکترونیک، دانشکده مهندسی مکانیک،برق و کامپیوتر، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران

چکیده

In this paper, pyramidal shaped GaN-based quantum dots (QDs) with different sizes in each layer, surrounded by  is proposed for infrared photodetector mainly to enhance the detector performance. In this model, we are considering the QDs sizes’ distribution to calculate all parameters instead of using Poisson distribution to express the inhomogeneous broadening just in the absorption coefficient. To model the performance of the devices, the Schrödinger equation has been solved using the effective mass approximation; then, the absorption coefficient, the gain, the responsivity, the electron mobility, the dark current, and the detectivity as a function of temperature for different biases are obtained. Significant improvements in the optical behavior are seen in the modeled results at T = 220 K.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of the non-uniform distributed GaN QDs based Infrared Photodetector

نویسندگان [English]

  • H. Fazlalipour 1
  • A. Asgari 2
  • Gh. Darvish 3
1 Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran
2 Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz 55165-163, Iran
3 عضو هیات علمی تمام وقت
چکیده [English]

In this paper, pyramidal shaped GaN-based quantum dots (QDs) with different sizes in each layer, surrounded by  is proposed for infrared photodetector mainly to enhance the detector performance. In this model, we are considering the QDs sizes’ distribution to calculate all parameters instead of using Poisson distribution to express the inhomogeneous broadening just in the absorption coefficient. To model the performance of the devices, the Schrödinger equation has been solved using the effective mass approximation; then, the absorption coefficient, the gain, the responsivity, the electron mobility, the dark current, and the detectivity as a function of temperature for different biases are obtained. Significant improvements in the optical behavior are seen in the modeled results at T = 220 K.

کلیدواژه‌ها [English]

  • Pyramidal quantum dots
  • infrared photodetector
  • non- uniform
  • temperature
[1]  T. Ashley, T. Burke, G. Pryce, A. Adams, A. Andreev, B. Murdin, E. O’Reilly, C. Pidgeon, “InSb 1− x N x growth and devices”, Solid-State Electronics, vol. 47, no. 3, pp. 387-394, 2003.
[2] D. Huang, M.A. Reshchikov, H. Morkoç, “Growth, structures, and optical properties of III-nitride quantum dots”, International journal of high-speed electronics and systems, vol. 12, no. 01, pp. 79-110, 2002.
[3] M. Dworzak, T. Bartel, M. Straßburg, I. Krestnikov, A. Hoffmann, R. Seguin, S. Rodt, A. Strittmatter, D. Bimberg, “Optical properties of InGaN quantum dots”, Superlattices and Microstructures, vol. 36, no. 4-6, pp. 763-772, 2004.
[4] B. Monemar, P. Paskov, A. Kasic, “Optical properties of InN—the bandgap question”, Superlattices and Microstructures, vol. 38, no. 1, pp. 38-56, 2005.
[5] T. Matsuoka, “Progress in nitride semiconductors from GaN to InN-MOVPE growth and characteristics”, Superlattices and Microstructures, vol. 37, no. 1, pp. 19-32, 2005.
[6] M. Mexis, S. Sergent, T. Guillet, C. Brimont, T. Bretagnon, B. Gil, F. Semond, M. Leroux, D. Néel, S. David, “High quality factor nitride-based optical cavities: microdisks with embedded GaN/Al (Ga) N quantum dots”, Optics letters, vol. 36, no. 12, pp. 2203-2205, 2011.
[7] D. Williams, A. Andreev, E. O’Reilly, “Dependence of exciton energy on dot size in Ga N∕ Al N quantum dots”, Physical Review B, vol. 73, no. 24, pp. 241301, 2006.
[8] V. Domen, “GaN-based blue laser diodes grown on SiC substrate as light source of high-density optical data storage”, Fujitsu Sci. Tech. J, vol. 34, no. 2, pp. 191-203, 1998.
[9] A. Asgari, E. Ahmadi, M. Kalafi, “AlxGa 1− xN/GaN multi-quantum-well ultraviolet detector based on pin heterostructures”, Microelectronics Journal, vol. 40, no. 1, pp. 104-107, 2009.
[10] A. Asgari, L. Faraone, “SiN passivation layer effects on un-gated two-dimensional electron gas density in AlGaN/AlN/GaN field-effect transistors”, Applied Physics Letters, vol. 100, no. 12, pp. 122106, 2012.
[11] S. Wang, M. Lo, H. Hsiao, H. Ling, C. Lee, “Temperature dependent responsivity of quantum dot infrared photodetectors”, Infrared physics & technology, vol. 50, no. 2, pp. 166-170, 2007.
[12] H. Lim, W. Zhang, S. Tsao, T. Sills, J. Szafraniec, K. Mi, B. Movaghar, M. Razeghi, “Quantum dot infrared photodetectors: comparison of experiment and theory”, Physical Review B, vol. 72, no. 8, pp. 085332, 2005.
[13] S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, Y. Arakawa, “A gallium nitride single-photon source operating at 200 K”, Nature materials, vol. 5, no. 11, pp. 887, 2006.
[14] A. Gueddim, T. Eloud, N. Messikine, N. Bouarissa, “Energy levels and optical properties of GaN spherical quantum dots”, Superlattices and Microstructures, vol. 77, pp. 124-133, 2015.
[15] J. Phillips, P. Bhattacharya, S. Kennerly, D. Beekman, M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors”, IEEE Journal of Quantum Electronics, vol. 35, no. 6, pp. 936-943, 1999.
[16] D. Pan, E. Towe, “Conduction intersubband (In, Ga) As/GaAs quantum dot infrared photodetectors”, Electronics Letters, vol. 34, no. 19, pp. 1883-1884, 1998.
[17] L. Jiang, S. Li, N. Yeh, J. Chyi, C. Ross, K. Jones, “In 0.6 Ga 0.4 As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K”, Applied physics letters, vol. 82, no. 12, pp. 1986-1988, 2003.
[18] Z. Ye, J.C. Campbell, Z. Chen, E. Kim, A. Madhukar, “Noise and photoconductive gain in InAs quantum-dot infrared photodetectors”, Applied physics letters, vol. 83, no. 6, pp. 1234-1236, 2003.
[19] N. Suzuki, N. Iizuka, K. Kaneko, “Simulation of ultrafast GaN/AlN intersubband optical switches”, IEICE transactions on electronics, vol. 88, no. 3, pp. 342-348, 2005.
[20] S.H. Park, W.P. Hong, J. Kim, “Confinement-dependent exciton binding energy in wurtzite GaN/AlxIn1− xN quantum dots”, Superlattices and Microstructures, vol. 109, pp. 254-258, 2017.
[21] A. Asgari, S. Razi, “High performances III-Nitride quantum dot infrared photodetector operating at room temperature”, Optics express, vol. 18, no. 14, pp. 14604-14615, 2010.
[22] S. De Rinaldis, I. D’Amico, E. Biolatti, R. Rinaldi, R. Cingolani, F. Rossi, “Intrinsic exciton-exciton coupling in GaN-based quantum dots: Application to solid-state quantum computing”, Physical Review B, vol. 65, no. 8, pp. 081309, 2002.
[23] J. Phillips, P. Bhattacharya, S. Kennerly, D. Beekman, M. Dutta, “Self-assembled InAs-GaAs quantum-dot intersubband detectors”, IEEE Journal of Quantum Electronics, vol. 35, no. 6, pp. 936-943, 1999.
[24] M. Zavvari, V. Ahmadi, A. Mir, “High performance avalanche quantum dot photodetector for mid-infrared detection”, Optical and Quantum Electronics, vol. 47, no. 5, pp. 1207-1217, 2014.
[25] H. Fazlalipour, A. Asgari, G. Darvish, “Modeling of pyramidal shape quantum dot infrared photodetector: the effects of temperature and quantum dot size”, Journal of Nanophotonics, vol. 12, no. 2, pp. 026006, 2018.
[26] M. Califano, P. Harrison, “Presentation and experimental validation of a single-band, constant-potential model for self-assembled InAs/GaAs quantum dots”, Physical Review B, vol. 61, no. 16, pp. 10959, 2000.
[27] F. Bernardini, V. Fiorentini, “Spontaneous versus piezoelectric polarization in III–V nitrides: conceptual aspects and practical consequences”, physica status solidi (b), vol. 216, no. 1, pp. 391-398, 1999.
[28] A. Asgari, M. Kalafi, L. Faraone, “Effects of partially occupied sub-bands on two-dimensional electron mobility in Al x Ga 1− x N/GaN heterostructures”, Journal of applied physics, vol. 95, no. 3, pp. 1185-1190, 2004.
[29] H. Liu, “Quantum dot infrared photodetector”, Optoelectronics Review, no. 1, pp. 1-6, 2003.
[30] Z. Ye, J. C. Campbell, Z. Chen, E.T. Kim, A. Madhukar, “Normal-incidence InAs self-assembled quantum-dot infrared photodetectors with a high detectivity”, IEEE journal of quantum electronics, vol. 38, no. 9, pp. 1234-1237, 2002.