Improved Direct Sequence Spread Spectrum Signal PN Estimation using Maximum Likelihood Algorithm

Document Type : Original Article

Authors

1 Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

2 Faculty of Electrical Engineering, Iran University of Science and Technology, Tehran Iran,

Abstract

This study presents a Pseudo noise sequence (PN) estimation algorithm using maximum likelihood method in low signal to noise ratio. The received signal samples are divided into temporal segments. Then correlation matrix is computed for eigenvalue estimation. Eigenvector related to largest eigenvalue of this matrix is chosen and de-noised by stationary wavelet transform to find asynchronous of sequence and chip rate. The estimation of PN sequence, is found through a maximum likelihood algorithm for delay estimation and interpolation filter. Simulation results are applied to evaluate the proposed method and compare with previous methods in terms of computational complexity and accuracy of the chip rate and the PN estimation. Furthermore, minimum number of required samples are investigated for true estimation accuracy measurement. The results indicated that, the proposed method presented 13% better accuracy of PN sequence estimation compared to other methods.

Keywords


[1]      S. Sedaghatnejad and M. Farhang, Detectability of Chaotic Direct-Sequence Spread-Spectrum Signals, IEEE Wireless Communications Letters, vol. 4, pp. 589-592, 2015.
[2]      Y. Shen, Y. Wang, X. Yu and S. Wu, Fast cross-correlation mitigation via minimum mean-square error estimation based on matched filter outputs for consecutive DSSS signals, IEEE Transactions on Aerospace and Electronic Systems, vol. 52, pp. 2044-2053, 2016.
[3]      V. L. Nir and B. Scheers, Robust blind carrier frequency synchronisation for direct sequence spread spectrum systems, Electronics Letters, vol. 51, pp. 425-427, 2015.
[4]      مریم زیرجدی، مهدی تیموری،«همزمان سازی کور سیگنال‌های برست TDMA در محیط‌های غیرهمیار »، مجله مهندسی برق دانشگاه تبریز، جلد49، شماره1، ص.201-203، 1398
[5]      J. H. Liang, X. Wang, F. H. Wang and Z. T. Huang, Blind spreading sequence estimation algorithm for long-code DS-CDMA signals in asynchronous multi-user systems, IET Signal Processing, vol. 11, pp. 704-710, 2017.
[6]      G. Burel, Detection of spread spectrum transmissions using fluctuations of correlation estimators, in IEEE Int. Symp. on Intelligent Signal Processing and Communication Systems (ISPACS'20, 2000, p. B8).
[7]      C. Bouder, S. Azou, and G. Burel, Performance analysis of a spreading sequence estimator for spread spectrum transmissions, Journal of the Franklin Institute, vol. 341, pp. 595-614, 2004/11/01/ 2004.
[8]      J. D. Vlok and J. C. Olivier, Blind sequence-length estimation of low-SNR cyclostationary sequences, IET Communications, vol. 8, pp. 1578-1588, 2014.
[9]      T. Zhang and A. Mu, A modified eigen-structure analyzer to lower SNR DS-SS signals under narrow band interferences, Digital Signal Processing, vol. 18, pp. 526-533, 2008.
[10]      P. y. Qui, Z. t. Huang, W. l. Jiang, and C. Zhang, Improved blind-spreading sequence estimation algorithm for direct sequence spread spectrum signals, IET Signal Processing, vol. 2, pp. 139-146, 2008.
[11]      Y. Zhan, Z. Cao, and J. Lu, Spread-spectrum sequence estimation for DSSS signal in non-cooperative communication systems, IEE Proceedings - Communications, vol. 152, pp. 476-480, 2005.
[12]      Z. Sha, Z. Huang, Y. Zhou, and F. Wang, Blind spreading sequence estimation based on hill-climbing algorithm, in 2012 IEEE 11th International Conference on Signal Processing, 2012, pp. 1299-1302.
[13]      محمود محصل فقهی، «تخمین همزمان آفست زمانی و آفست فرکانس حامل در سامانههای ارتباطی مبتنی بر پخش ویدئوی دیجیتال »، مجله مهندسی برق دانشگاه تبریز، جلد48، شماره1، ص.291-301، 1397
[14]      B. Shen and J. x. Wang, Chip rate and pseudo-noise sequence estimation for direct sequence spread spectrum signals, IET Signal Processing, vol. 11, pp. 727-733, 2017.
[15]      U. Mengali, Synchronization techniques for digital receivers, Springer Science & Business Media, 2013.
[16]      P. Y. Qiu, Z. T. Huang, W. L. Jiang and C. Zhang, Blind multiuser spreading sequences estimation algorithm for the direct-sequence code division multiple access signals, IET Signal Processing, vol. 4, pp. 465-478, 2010.
[17]      M. Rosas-Orea, M. Hernandez-Diaz, V. Alarcon-Aquino and L. G. Guerrero-Ojeda, A comparative simulation study of wavelet based denoising algorithms, in null, 2005, pp. 125-130.
[18]      R. Naga, S. Chandralingam, T. Anjaneyulu, and K. Satyanarayana, Denoising EOG signal using stationary wavelet transform, Measurement Science Review, vol. 12, pp. 46-51, 2012.
[19]      E. L. Lema-Condo, F. L. Bueno-Palomeque, S. E. Castro-Villalobos, E. F. Ordoñez-Morales, and L. J. Serpa-Andrade, Comparison of wavelet transform symlets (2-10) and daubechies (2-10) for an electroencephalographic signal analysis, in 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), 2017, pp. 1-4.
[20]      M. D. Sacchi, T. J. Ulrych, and C. J. Walker, Interpolation and extrapolation using a high-resolution discrete Fourier transform, IEEE Transactions on Signal Processing, vol. 46, pp. 31-38, 1998.
[21]      J. R. Price and M. Hayes, Resampling and reconstruction with fractal interpolation functions, IEEE signal processing letters, vol. 5, pp. 228-230, 1998.