Performance Analysis of Wound Rotor Brushless Resolvers under Run out Fault

Document Type : Original Article

Author

Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

Resolver is an electromagnetic position sensors. To ensure the performance of the resolver is not deteriorated by the eccentricities, pancake resolvers are employed in industrial applications. The accuracy of pancake resolvers is suspected to be influenced by run-out fault. In this paper, the effect of run-out fault on the accuracy of the wound rotor resolver is studied by 3-D time stepping finite element method (TSFEM). Then, the contribution of the resolver’s rotor and the secondary of rotary transformer (RT) in the detected error is determined. Based on the analysis, an optimized structure is proposed to decrease the effect of run out fault. Finally, the success of the optimization is validated using experimental tests on the prototype of the sensor.

Keywords


[1] زهرا نصیری قیداری، «بررسی تأثیر شار نشتی ترانسفورماتور گردان روی موقعیت خروجی ریزالورهای بدون جاروبک شار محوری»، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2، صص 741-749، تابستان 96
[2] حجت حاتمی، محمد­باقر بناءشریفیان، محمد­رضا فیضی، «ارائه روش جدید طراحی بهبودیافته ماشین­های مغناطیس دائم شار محوری سرعت پایین مورد­استفاده در خودروهای هیبریدی»، مجله مهندسی برق دانشگاه تبریز، جلد 45، شماره 2، صص51-64، تابستان 94
[3] X. Ge and Z. Q. Ahu, “A novel design of rotor contour for variable reluctance resolver by injecting auxiliary air-gap permeance harmonics”, IEEE Trans. Energy Conversion, vol. 31, no. 1, pp. 345-353, March 2016.
[4] P. B. Reddy, A. M. EL-Refaie, K. K. Huh, J. K. Tangudu and T. M. Jahns, “Comparison of interior and surface PM machines equipped with fractional-slot concentrated windings for hybrid traction applications,” IEEE Trans. Energy Conversion, vol. 27, no. 3, pp. 593–602, Sep. 2012.
[5] K. T. Chau, C. C. Chan and C. H. Liu, “Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2246–2257, Jun. 2008.
[6] K. I. Laskaris and A. G. Kladas, “Optimal power utilization by adjusting torque boost and field weakening operation in permanent magnet traction motors,” IEEE Trans. Energy Convers., vol. 27, no. 3, pp. 615–623, Jul. 2012.
[7] E. Mese, Y. Yasa, H. Akca, M. G. Aydeniz and M. Garip, “Investigating operating modes and converter options of dual winding permanent magnet synchronous machines for hybrid electric vahicles,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 285–295, Feb. 2015.
[8] W. Q. Huang, Y. T. Zhang, X. C. Zhang and G. Sun, “Accurate torque control of interior permanent magnet synchronous machine,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 29–37, Feb. 2014.
[9] فرید توتونچیان،  حسگر الکترومغناطیسی موقعیت زاویه­ای با استفاده از سلسین­های 90 درجه (رزولور) با هدف کاهش اثرپذیری خطای موقعیت، رساله برای دریافت درجه دکتری مهندسی برق، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران، 1391.
[10] Z. Nasiri-Gheidari and F. Tootoonchian, “Axial flux resolver design techniques for minimizing position error due to static eccentricities”, IEEE Sensors Journal, vol. 15, no. 7,  pp. 4027-4034, July 2015.
[11] J. Figueiredo, “Resolver models for manufacturing,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3693–3700, Aug. 2011.
[12] ح. صانعی، طراحی، تحلیل و ساخت ریزالورِ رلوکتانس متغیرِ شار محوری، پایان­نامه کارشناسی ارشد، دانشگاه صنعتی شریف، تهران، ایران، 1396.
[13] R. Alipour-Sarabi, Z. Nasiri-Gheidari, F. Tootoonchian, and H. Oraee, “Effects of Physical Parameters on the Accuracy of Axial Flux Resolvers”, IEEE Transactions on Magnetics, vol. 53, no. 4, pp. 1-11, April 2017.
[14] C.S. Jin, I.S. Jang, J.N. Bae, J. Lee, and W.H. Kim, “Proposal of Improved Winding Method for VR Resolver”, IEEE Transaction on Magnetics, vol. 51, no. 3, pp. , March 2015.
[15] Z. Nasiri-Gheidari and F. Tootoonchian, F. Zare “Design Oriented Technique for Mitigating Position Error Due To Shaft Run-out in Sinusoidal-Rotor Variable Reluctance Resolvers,” iET Electric Power Application, vol. 11, no. 1, pp. 132 – 141, 2017.
[16] Z. Zhang, F. Ni, Y. Dong, C. Guo, M. Jin, and H. Liu, “A Novel Absolute Magnetic Rotary Sensor”, IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4408-4419, July 2015.
[17] L. Sun, “Analysis and improvement on the structure of a variable reluctance resolvers,” IEEE Trans. Magn., vol. 44, no. 8, pp. 2002–2008, Aug. 2008.
[18] X. Ge, Z. Q. Zhu, R. Ren, and J. T. Chen, “A Novel Variable Reluctance Resolver with Nonoverlapping Tooth–Coil Windings”, ”, IEEE Transaction on Energy Conversion, vol. 30, no. 2, pp. 784-794, June 2015.
[19] Z. Nasiri-Gheidari, R. Alipour-Sarabi, F. Tootoonchian, and F. Zare, “Performance Evaluation of Disk Type Variable Reluctance Resolvers”, IEEE Sensors Journal, Vol. 17, no. 13, pp. 4037-4045, July 2017.